GuUGT, a glycosyltransferase from Glycyrrhiza uralensis, exhibits glycyrrhetinic acid 3- and 30-O-glycosylation

Glycyrrhiza uralensis is a well-known herbal medicine that contains triterpenoid saponins as the predominant bioactive components, and these compounds include glycyrrhetinic acid (GA)-glycoside derivatives. Although two genes encoding UDP-glycosyltransferases (UGTs) that glycosylate these derivates...

Full description

Bibliographic Details
Main Authors: Ying Huang, Da Li, Jinhe Wang, Yi Cai, Zhubo Dai, Dan Jiang, Chunsheng Liu
Format: Article
Language:English
Published: The Royal Society 2019-10-01
Series:Royal Society Open Science
Subjects:
Online Access:https://royalsocietypublishing.org/doi/pdf/10.1098/rsos.191121
Description
Summary:Glycyrrhiza uralensis is a well-known herbal medicine that contains triterpenoid saponins as the predominant bioactive components, and these compounds include glycyrrhetinic acid (GA)-glycoside derivatives. Although two genes encoding UDP-glycosyltransferases (UGTs) that glycosylate these derivates have been functionally characterized in G. uralensis, the mechanisms of glycosylation by other UGTs remain unknown. Based on the available transcriptome data, we isolated a UGT with expression in the roots of G. uralensis. This UGT gene possibly encodes a glucosyltransferase that glycosylates GA derivatives at the 3-OH site. Biochemical analyses revealed that the recombinant UGT enzyme could transfer a glucosyl moiety to the free 3-OH or 30-COOH groups of GA. Furthermore, engineered yeast harbouring genes involved in the biosynthetic pathway for GA-glycoside derivates produced GA-3-O-β-D-glucoside, implying that the enzyme has GA 3-O-glucosyltransferase activity in vivo. Our results could provide a frame for understand the function of the UGT gene family, and also is important for further studies of triterpenoids biosynthesis in G. uralensis.
ISSN:2054-5703