New Series Solution of the Caputo Fractional Ambartsumian Delay Differential Equationation by Mittag-Leffler Functions

The fractional generalization of the Ambartsumian delay equation with Caputo’s fractional derivative is considered. The Ambartsumian delay equation is very difficult to be solved neither in the case of ordinary derivatives nor in the case of fractional derivatives. In this paper we combine the Lapla...

Full description

Bibliographic Details
Main Authors: Weam Alharbi, Snezhana Hristova
Format: Article
Language:English
Published: MDPI AG 2021-01-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/9/2/157
Description
Summary:The fractional generalization of the Ambartsumian delay equation with Caputo’s fractional derivative is considered. The Ambartsumian delay equation is very difficult to be solved neither in the case of ordinary derivatives nor in the case of fractional derivatives. In this paper we combine the Laplace transform with the Adomian decomposition method to solve the studied equation. The exact solution is obtained as a series which terms are expressed by the Mittag-Leffler functions. The advantage of the present approach over the known in the literature ones is discussed.
ISSN:2227-7390