A note on co-maximal graphs of commutative rings
Let R be a commutative ring with unity. The co-maximal graph Γ ( R ) is the graph with vertex set R and two vertices a and b are adjacent if R a + R b = R . In this paper, we characterize rings for which the co-maximal graph Γ ( R ) is a line graph of some graph G and determine rings for which Γ ( R...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Taylor & Francis Group
2018-04-01
|
Series: | AKCE International Journal of Graphs and Combinatorics |
Online Access: | http://www.sciencedirect.com/science/article/pii/S097286001830063X |
id |
doaj-7cf5ebd299f84b219c92291e5aa6ebe8 |
---|---|
record_format |
Article |
spelling |
doaj-7cf5ebd299f84b219c92291e5aa6ebe82020-11-25T03:51:11ZengTaylor & Francis GroupAKCE International Journal of Graphs and Combinatorics0972-86002018-04-01151112114A note on co-maximal graphs of commutative ringsDeepa Sinha0Anita Kumari Rao1Corresponding author.; South Asian University, New Delhi 110021, IndiaSouth Asian University, New Delhi 110021, IndiaLet R be a commutative ring with unity. The co-maximal graph Γ ( R ) is the graph with vertex set R and two vertices a and b are adjacent if R a + R b = R . In this paper, we characterize rings for which the co-maximal graph Γ ( R ) is a line graph of some graph G and determine rings for which Γ ( R ) is Eulerian or Hamiltonian. We also find the diameter and girth of Γ ( R ) . Keywords: Finite commutative ring, Maximal ideal, Co-maximal graph, Line graphhttp://www.sciencedirect.com/science/article/pii/S097286001830063X |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Deepa Sinha Anita Kumari Rao |
spellingShingle |
Deepa Sinha Anita Kumari Rao A note on co-maximal graphs of commutative rings AKCE International Journal of Graphs and Combinatorics |
author_facet |
Deepa Sinha Anita Kumari Rao |
author_sort |
Deepa Sinha |
title |
A note on co-maximal graphs of commutative rings |
title_short |
A note on co-maximal graphs of commutative rings |
title_full |
A note on co-maximal graphs of commutative rings |
title_fullStr |
A note on co-maximal graphs of commutative rings |
title_full_unstemmed |
A note on co-maximal graphs of commutative rings |
title_sort |
note on co-maximal graphs of commutative rings |
publisher |
Taylor & Francis Group |
series |
AKCE International Journal of Graphs and Combinatorics |
issn |
0972-8600 |
publishDate |
2018-04-01 |
description |
Let R be a commutative ring with unity. The co-maximal graph Γ ( R ) is the graph with vertex set R and two vertices a and b are adjacent if R a + R b = R . In this paper, we characterize rings for which the co-maximal graph Γ ( R ) is a line graph of some graph G and determine rings for which Γ ( R ) is Eulerian or Hamiltonian. We also find the diameter and girth of Γ ( R ) . Keywords: Finite commutative ring, Maximal ideal, Co-maximal graph, Line graph |
url |
http://www.sciencedirect.com/science/article/pii/S097286001830063X |
work_keys_str_mv |
AT deepasinha anoteoncomaximalgraphsofcommutativerings AT anitakumarirao anoteoncomaximalgraphsofcommutativerings AT deepasinha noteoncomaximalgraphsofcommutativerings AT anitakumarirao noteoncomaximalgraphsofcommutativerings |
_version_ |
1724488322317811712 |