Geology, Mineralogy, Fluid Inclusion, and H–O–S–Pb Isotope Constraints on Ore Genesis of the Keyue Sb–Pb–Zn–Ag Deposit in Southern Tibet

The Keyue deposit is a medium-sized deposit similar to the Zhaxikang deposit within the North Himalayan Metallogenic Belt (NHMB). The ore formation can be divided into Pb–Zn mineralization (stages 1 and 2), Sb–Ag mineralization (stages 3 and 4), and Sb–Hg mineralization (stages 5 and 6). The fluid i...

Full description

Bibliographic Details
Main Authors: Da Wang, Youye Zheng, Wantao Yang, Ngawang Gyatso
Format: Article
Language:English
Published: Hindawi-Wiley 2018-01-01
Series:Geofluids
Online Access:http://dx.doi.org/10.1155/2018/3175423
id doaj-7cdda3adeaca44518b36b5e62a13b1c6
record_format Article
spelling doaj-7cdda3adeaca44518b36b5e62a13b1c62020-11-24T20:47:10ZengHindawi-WileyGeofluids1468-81151468-81232018-01-01201810.1155/2018/31754233175423Geology, Mineralogy, Fluid Inclusion, and H–O–S–Pb Isotope Constraints on Ore Genesis of the Keyue Sb–Pb–Zn–Ag Deposit in Southern TibetDa Wang0Youye Zheng1Wantao Yang2Ngawang Gyatso3State Key Laboratory of Geological Processes and Mineral Resources, School of Earth Sciences and Resources, China University of Geosciences, Beijing 100083, ChinaState Key Laboratory of Geological Processes and Mineral Resources, School of Earth Sciences and Resources, China University of Geosciences, Beijing 100083, ChinaNo. 10 Detachment, Division of Gold, Chinese People’s Armed Police Force, Kunming 650001, ChinaChina Three Gorges Projects Developments Co., Led, Beijing 100038, ChinaThe Keyue deposit is a medium-sized deposit similar to the Zhaxikang deposit within the North Himalayan Metallogenic Belt (NHMB). The ore formation can be divided into Pb–Zn mineralization (stages 1 and 2), Sb–Ag mineralization (stages 3 and 4), and Sb–Hg mineralization (stages 5 and 6). The fluid inclusion data show that the first two pulses of mineralization have different characteristics, but both belong to the epithermal category (stage 2: 172.9~277.2°C, 7.4~17.0 wt% NaCl eq.; stages 3 and 4: 142.1~321.0°C, 2.7~17.96 wt% NaCl eq.). The H–O isotopic compositions of stages 3 and 4 quartz (δDV-SMOW: –174‰~−120‰, δ18OH2O: 1.59‰~11.34‰) are similar to those of stages 3 and 4 minerals (δDV-SMOW: –165‰~−150‰, δ18OH2O: 6.14‰~13.03‰), whereas they are different from stage 1 and 2 (δDV-SMOW: –108.3‰~−103.6‰, δ18OH2O: 1.92‰~3.82‰) and stage 5 and 6 (δDV-SMOW: –165‰~−138‰, δ18OH2O: −12.91‰~0.82‰) minerals from the Zhaxikang deposit. Additionally, stage 2 sulfides have δ34S values of 5.4‰~11.2‰ that are similar to stage 2 sulfides in the Zhaxikang deposit (7.8‰~12.2‰), and these δ34S values overlap those of many SEDEX-type deposits. The δ34S values also show a decreasing trend from stage 2 through stages 3 and 4 to stage 5 in Keyue and Zhaxikang deposits, which may relate to the overprint by later mineralization events. The Pb isotopic data (206Pb/204Pb: 18.530~19.780, 207Pb/204Pb: 15.674~15.939, and 208Pb/204Pb: 38.618~40.559) show a significant crustal contribution. However, the minerals from different pulses of mineralization also exhibit slightly different Pb isotopic characteristics. These inferences from fluid inclusions and isotope are also demonstrated by geological and mineralogical evidence. Overall, the Keyue deposit is an epithermal deposit and has mainly experienced three pulses of mineralization.http://dx.doi.org/10.1155/2018/3175423
collection DOAJ
language English
format Article
sources DOAJ
author Da Wang
Youye Zheng
Wantao Yang
Ngawang Gyatso
spellingShingle Da Wang
Youye Zheng
Wantao Yang
Ngawang Gyatso
Geology, Mineralogy, Fluid Inclusion, and H–O–S–Pb Isotope Constraints on Ore Genesis of the Keyue Sb–Pb–Zn–Ag Deposit in Southern Tibet
Geofluids
author_facet Da Wang
Youye Zheng
Wantao Yang
Ngawang Gyatso
author_sort Da Wang
title Geology, Mineralogy, Fluid Inclusion, and H–O–S–Pb Isotope Constraints on Ore Genesis of the Keyue Sb–Pb–Zn–Ag Deposit in Southern Tibet
title_short Geology, Mineralogy, Fluid Inclusion, and H–O–S–Pb Isotope Constraints on Ore Genesis of the Keyue Sb–Pb–Zn–Ag Deposit in Southern Tibet
title_full Geology, Mineralogy, Fluid Inclusion, and H–O–S–Pb Isotope Constraints on Ore Genesis of the Keyue Sb–Pb–Zn–Ag Deposit in Southern Tibet
title_fullStr Geology, Mineralogy, Fluid Inclusion, and H–O–S–Pb Isotope Constraints on Ore Genesis of the Keyue Sb–Pb–Zn–Ag Deposit in Southern Tibet
title_full_unstemmed Geology, Mineralogy, Fluid Inclusion, and H–O–S–Pb Isotope Constraints on Ore Genesis of the Keyue Sb–Pb–Zn–Ag Deposit in Southern Tibet
title_sort geology, mineralogy, fluid inclusion, and h–o–s–pb isotope constraints on ore genesis of the keyue sb–pb–zn–ag deposit in southern tibet
publisher Hindawi-Wiley
series Geofluids
issn 1468-8115
1468-8123
publishDate 2018-01-01
description The Keyue deposit is a medium-sized deposit similar to the Zhaxikang deposit within the North Himalayan Metallogenic Belt (NHMB). The ore formation can be divided into Pb–Zn mineralization (stages 1 and 2), Sb–Ag mineralization (stages 3 and 4), and Sb–Hg mineralization (stages 5 and 6). The fluid inclusion data show that the first two pulses of mineralization have different characteristics, but both belong to the epithermal category (stage 2: 172.9~277.2°C, 7.4~17.0 wt% NaCl eq.; stages 3 and 4: 142.1~321.0°C, 2.7~17.96 wt% NaCl eq.). The H–O isotopic compositions of stages 3 and 4 quartz (δDV-SMOW: –174‰~−120‰, δ18OH2O: 1.59‰~11.34‰) are similar to those of stages 3 and 4 minerals (δDV-SMOW: –165‰~−150‰, δ18OH2O: 6.14‰~13.03‰), whereas they are different from stage 1 and 2 (δDV-SMOW: –108.3‰~−103.6‰, δ18OH2O: 1.92‰~3.82‰) and stage 5 and 6 (δDV-SMOW: –165‰~−138‰, δ18OH2O: −12.91‰~0.82‰) minerals from the Zhaxikang deposit. Additionally, stage 2 sulfides have δ34S values of 5.4‰~11.2‰ that are similar to stage 2 sulfides in the Zhaxikang deposit (7.8‰~12.2‰), and these δ34S values overlap those of many SEDEX-type deposits. The δ34S values also show a decreasing trend from stage 2 through stages 3 and 4 to stage 5 in Keyue and Zhaxikang deposits, which may relate to the overprint by later mineralization events. The Pb isotopic data (206Pb/204Pb: 18.530~19.780, 207Pb/204Pb: 15.674~15.939, and 208Pb/204Pb: 38.618~40.559) show a significant crustal contribution. However, the minerals from different pulses of mineralization also exhibit slightly different Pb isotopic characteristics. These inferences from fluid inclusions and isotope are also demonstrated by geological and mineralogical evidence. Overall, the Keyue deposit is an epithermal deposit and has mainly experienced three pulses of mineralization.
url http://dx.doi.org/10.1155/2018/3175423
work_keys_str_mv AT dawang geologymineralogyfluidinclusionandhospbisotopeconstraintsonoregenesisofthekeyuesbpbznagdepositinsoutherntibet
AT youyezheng geologymineralogyfluidinclusionandhospbisotopeconstraintsonoregenesisofthekeyuesbpbznagdepositinsoutherntibet
AT wantaoyang geologymineralogyfluidinclusionandhospbisotopeconstraintsonoregenesisofthekeyuesbpbznagdepositinsoutherntibet
AT ngawanggyatso geologymineralogyfluidinclusionandhospbisotopeconstraintsonoregenesisofthekeyuesbpbznagdepositinsoutherntibet
_version_ 1716810942090575872