A Minimum Mean-Square-Error (MMSE) Decoder for Quasi-Orthogonal Space–Time Block Code

The quasi-orthogonal space−time block code (QO-STBC) was introduced to achieve a full transmission rate for the four antennas system. In this paper, a decoding method for the QO-STBC is proposed to improve the bit-error-rate (BER) and to solve a rank-deficient problem. The proposed algorit...

Full description

Bibliographic Details
Main Author: Jae Jin Jeong
Format: Article
Language:English
Published: MDPI AG 2019-06-01
Series:Electronics
Subjects:
Online Access:https://www.mdpi.com/2079-9292/8/7/732
Description
Summary:The quasi-orthogonal space−time block code (QO-STBC) was introduced to achieve a full transmission rate for the four antennas system. In this paper, a decoding method for the QO-STBC is proposed to improve the bit-error-rate (BER) and to solve a rank-deficient problem. The proposed algorithm is based on the minimum mean-square-error (MMSE) technique. To overcome the implementation problem from the MMSE, an estimation method of the noise variance is developed in this paper. The proposed algorithm is implemented without matrix inversion, therefore, the proposed algorithm achieves a better BER than the conventional algorithms, as it has a low computational complexity. The simulation results show the low BER of the proposed algorithm in a Rayleigh fading channel.
ISSN:2079-9292