Mathematical simulation and numerical method for solving geomigration problem
In the present paper a two‐dimensional boundary value problem of geomigration taking into account convection transfer, hydrodynamic dispersion, molecular diffusion and absorption is considered. The problem is described by the system of two differential equations for the level of ground water [3]...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Vilnius Gediminas Technical University
2003-06-01
|
Series: | Mathematical Modelling and Analysis |
Subjects: | |
Online Access: | https://journals.vgtu.lt/index.php/MMA/article/view/9769 |
id |
doaj-7cd8a0d48dcc40fe8764a3e629577143 |
---|---|
record_format |
Article |
spelling |
doaj-7cd8a0d48dcc40fe8764a3e6295771432021-07-02T11:45:51ZengVilnius Gediminas Technical UniversityMathematical Modelling and Analysis1392-62921648-35102003-06-018210.3846/13926292.2003.9637217Mathematical simulation and numerical method for solving geomigration problemG. Gromyko0G. Zayats1Institute of Mathematics , National Academy of Sciences of Belarus , Surganov 11, Minsk, 220072, BelarusInstitute of Mathematics , National Academy of Sciences of Belarus , Surganov 11, Minsk, 220072, Belarus In the present paper a two‐dimensional boundary value problem of geomigration taking into account convection transfer, hydrodynamic dispersion, molecular diffusion and absorption is considered. The problem is described by the system of two differential equations for the level of ground water [3] and the concentration of the contaminant in ground water [4]. For numerical solving we used the finite difference schemes taking into account the characteristic properties of the problem. The calculations were produced in conformity with concrete hydro‐geological conditions. The obtained solutions are used for prognosis of contaminant migration in ground water. Geomigracijos uždavinio matematinis modeliavimas ir skaitiniai metodai Santrauka Straipsnyje nagrinejamas dvimatis kraštinis geomigracijos uždavinys, kai atsižvelgiama j konvekcini pernešima, hidrodinamine dispersija, molekuline difuzija. Šis uždavinys aprašomas dvieju diferencialiniu lygčiu sistema grunto vandeniui ir užterštumo koncentracijai vandenyje. Šiam uždaviniui spresti taikomas baigtiniu skirtumu metodas atsižvelgiant j uždavinio charakteristines savybes. Skaičiavimai buvo atlikti su konkrečiomis hidrogeologinemis salygomis. Gauti sprendiniai gali būti naudojami prognozuojant užterštumo judejima gruntiniame vandenyje. First Published Online: 14 Oct 2010 https://journals.vgtu.lt/index.php/MMA/article/view/9769mathematical simulationnumerical methodsgeomigrtation problemfinite difference schemes |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
G. Gromyko G. Zayats |
spellingShingle |
G. Gromyko G. Zayats Mathematical simulation and numerical method for solving geomigration problem Mathematical Modelling and Analysis mathematical simulation numerical methods geomigrtation problem finite difference schemes |
author_facet |
G. Gromyko G. Zayats |
author_sort |
G. Gromyko |
title |
Mathematical simulation and numerical method for solving geomigration problem |
title_short |
Mathematical simulation and numerical method for solving geomigration problem |
title_full |
Mathematical simulation and numerical method for solving geomigration problem |
title_fullStr |
Mathematical simulation and numerical method for solving geomigration problem |
title_full_unstemmed |
Mathematical simulation and numerical method for solving geomigration problem |
title_sort |
mathematical simulation and numerical method for solving geomigration problem |
publisher |
Vilnius Gediminas Technical University |
series |
Mathematical Modelling and Analysis |
issn |
1392-6292 1648-3510 |
publishDate |
2003-06-01 |
description |
In the present paper a two‐dimensional boundary value problem of geomigration taking into account convection transfer, hydrodynamic dispersion, molecular diffusion and absorption is considered. The problem is described by the system of two differential equations for the level of ground water [3] and the concentration of the contaminant in ground water [4]. For numerical solving we used the finite difference schemes taking into account the characteristic properties of the problem. The calculations were produced in conformity with concrete hydro‐geological conditions. The obtained solutions are used for prognosis of contaminant migration in ground water.
Geomigracijos uždavinio matematinis modeliavimas ir skaitiniai metodai
Santrauka
Straipsnyje nagrinejamas dvimatis kraštinis geomigracijos uždavinys, kai atsižvelgiama j konvekcini pernešima, hidrodinamine dispersija, molekuline difuzija. Šis uždavinys aprašomas dvieju diferencialiniu lygčiu sistema grunto vandeniui ir užterštumo koncentracijai vandenyje. Šiam uždaviniui spresti taikomas baigtiniu skirtumu metodas atsižvelgiant j uždavinio charakteristines savybes. Skaičiavimai buvo atlikti su konkrečiomis hidrogeologinemis salygomis. Gauti sprendiniai gali būti naudojami prognozuojant užterštumo judejima gruntiniame vandenyje.
First Published Online: 14 Oct 2010
|
topic |
mathematical simulation numerical methods geomigrtation problem finite difference schemes |
url |
https://journals.vgtu.lt/index.php/MMA/article/view/9769 |
work_keys_str_mv |
AT ggromyko mathematicalsimulationandnumericalmethodforsolvinggeomigrationproblem AT gzayats mathematicalsimulationandnumericalmethodforsolvinggeomigrationproblem |
_version_ |
1721330770983780352 |