Mathematical simulation and numerical method for solving geomigration problem

In the present paper a two‐dimensional boundary value problem of geomigration taking into account convection transfer, hydrodynamic dispersion, molecular diffusion and absorption is considered. The problem is described by the system of two differential equations for the level of ground water [3]...

Full description

Bibliographic Details
Main Authors: G. Gromyko, G. Zayats
Format: Article
Language:English
Published: Vilnius Gediminas Technical University 2003-06-01
Series:Mathematical Modelling and Analysis
Subjects:
Online Access:https://journals.vgtu.lt/index.php/MMA/article/view/9769
id doaj-7cd8a0d48dcc40fe8764a3e629577143
record_format Article
spelling doaj-7cd8a0d48dcc40fe8764a3e6295771432021-07-02T11:45:51ZengVilnius Gediminas Technical UniversityMathematical Modelling and Analysis1392-62921648-35102003-06-018210.3846/13926292.2003.9637217Mathematical simulation and numerical method for solving geomigration problemG. Gromyko0G. Zayats1Institute of Mathematics , National Academy of Sciences of Belarus , Surganov 11, Minsk, 220072, BelarusInstitute of Mathematics , National Academy of Sciences of Belarus , Surganov 11, Minsk, 220072, Belarus In the present paper a two‐dimensional boundary value problem of geomigration taking into account convection transfer, hydrodynamic dispersion, molecular diffusion and absorption is considered. The problem is described by the system of two differential equations for the level of ground water [3] and the concentration of the contaminant in ground water [4]. For numerical solving we used the finite difference schemes taking into account the characteristic properties of the problem. The calculations were produced in conformity with concrete hydro‐geological conditions. The obtained solutions are used for prognosis of contaminant migration in ground water. Geomigracijos uždavinio matematinis modeliavimas ir skaitiniai metodai Santrauka Straipsnyje nagrinejamas dvimatis kraštinis geomigracijos uždavinys, kai atsižvelgiama j konvekcini pernešima, hidrodinamine dispersija, molekuline difuzija. Šis uždavinys aprašomas dvieju diferencialiniu lygčiu sistema grunto vandeniui ir užterštumo koncentracijai vandenyje. Šiam uždaviniui spresti taikomas baigtiniu skirtumu metodas atsižvelgiant j uždavinio charakteristines savybes. Skaičiavimai buvo atlikti su konkrečiomis hidrogeologinemis salygomis. Gauti sprendiniai gali būti naudojami prognozuojant užterštumo judejima gruntiniame vandenyje. First Published Online: 14 Oct 2010 https://journals.vgtu.lt/index.php/MMA/article/view/9769mathematical simulationnumerical methodsgeomigrtation problemfinite difference schemes
collection DOAJ
language English
format Article
sources DOAJ
author G. Gromyko
G. Zayats
spellingShingle G. Gromyko
G. Zayats
Mathematical simulation and numerical method for solving geomigration problem
Mathematical Modelling and Analysis
mathematical simulation
numerical methods
geomigrtation problem
finite difference schemes
author_facet G. Gromyko
G. Zayats
author_sort G. Gromyko
title Mathematical simulation and numerical method for solving geomigration problem
title_short Mathematical simulation and numerical method for solving geomigration problem
title_full Mathematical simulation and numerical method for solving geomigration problem
title_fullStr Mathematical simulation and numerical method for solving geomigration problem
title_full_unstemmed Mathematical simulation and numerical method for solving geomigration problem
title_sort mathematical simulation and numerical method for solving geomigration problem
publisher Vilnius Gediminas Technical University
series Mathematical Modelling and Analysis
issn 1392-6292
1648-3510
publishDate 2003-06-01
description In the present paper a two‐dimensional boundary value problem of geomigration taking into account convection transfer, hydrodynamic dispersion, molecular diffusion and absorption is considered. The problem is described by the system of two differential equations for the level of ground water [3] and the concentration of the contaminant in ground water [4]. For numerical solving we used the finite difference schemes taking into account the characteristic properties of the problem. The calculations were produced in conformity with concrete hydro‐geological conditions. The obtained solutions are used for prognosis of contaminant migration in ground water. Geomigracijos uždavinio matematinis modeliavimas ir skaitiniai metodai Santrauka Straipsnyje nagrinejamas dvimatis kraštinis geomigracijos uždavinys, kai atsižvelgiama j konvekcini pernešima, hidrodinamine dispersija, molekuline difuzija. Šis uždavinys aprašomas dvieju diferencialiniu lygčiu sistema grunto vandeniui ir užterštumo koncentracijai vandenyje. Šiam uždaviniui spresti taikomas baigtiniu skirtumu metodas atsižvelgiant j uždavinio charakteristines savybes. Skaičiavimai buvo atlikti su konkrečiomis hidrogeologinemis salygomis. Gauti sprendiniai gali būti naudojami prognozuojant užterštumo judejima gruntiniame vandenyje. First Published Online: 14 Oct 2010
topic mathematical simulation
numerical methods
geomigrtation problem
finite difference schemes
url https://journals.vgtu.lt/index.php/MMA/article/view/9769
work_keys_str_mv AT ggromyko mathematicalsimulationandnumericalmethodforsolvinggeomigrationproblem
AT gzayats mathematicalsimulationandnumericalmethodforsolvinggeomigrationproblem
_version_ 1721330770983780352