A Multi-MCDS scheduling based virtual backbone network construction and maintenance algorithm in FANET

Constructing a virtual backbone network can efficiently concentrate most routing and forwarding operations of whole network into several dominating nodes in the virtual backbone sub-net, which is recently developing into an attracted candidate solution for the architectures of terrestrial mobile ad...

Full description

Bibliographic Details
Main Authors: Qi Xiaohan, Yang Zhihua
Format: Article
Language:English
Published: EDP Sciences 2018-01-01
Series:MATEC Web of Conferences
Online Access:https://doi.org/10.1051/matecconf/201818903013
Description
Summary:Constructing a virtual backbone network can efficiently concentrate most routing and forwarding operations of whole network into several dominating nodes in the virtual backbone sub-net, which is recently developing into an attracted candidate solution for the architectures of terrestrial mobile ad hoc networks. In a flying ad hoc network (FANET), however, high dynamics of nodes and scenarios produce considerably large challenges on the topology control and maintenance due to rapidly timevarying property of topology. In this paper, therefore, we proposed a link prediction-based minimal connected dominating set (MCDS) dependent topology control mechanism to achieve efficient maintenances of connectivity in the network. In particular, the proposed algorithm could provide a stable and effective virtual backbone sub-net in a fast changing topology of FANET, by flexibly scheduling multiple MCDS with a very efficient method. The simulation results shows that, compared with typical single CDS method, the proposed algorithm presents excellent performances in obviously dynamic environments with respect to fewer update times and higher rate of successful updates.
ISSN:2261-236X