Webbed spaces, double sequences, and the Macke convergence condition
In [3], Gilsdorf proved, for locally convex spaces, that every sequentially webbed space satisfies the Mackey convergence condition. In the more general frame of topological vector spaces, this theorem and its inverse are studied. The techniques used are double sequences and the localization theorem...
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
Hindawi Limited
1999-01-01
|
Series: | International Journal of Mathematics and Mathematical Sciences |
Subjects: | |
Online Access: | http://dx.doi.org/10.1155/S0161171299225215 |
Summary: | In [3], Gilsdorf proved, for locally convex spaces, that every sequentially webbed space satisfies the Mackey convergence condition. In the more general frame of topological vector spaces, this theorem and its inverse are studied. The techniques used are double sequences and the localization theorem for webbed spaces. |
---|---|
ISSN: | 0161-1712 1687-0425 |