Open Data, Collaborative Working Platforms, and Interdisciplinary Collaboration: Building an Early Career Scientist Community of Practice to Leverage Ocean Observatories Initiative Data to Address Critical Questions in Marine Science

Ocean observing systems are well-recognized as platforms for long-term monitoring of near-shore and remote locations in the global ocean. High-quality observatory data is freely available and accessible to all members of the global oceanographic community—a democratization of data that is particular...

Full description

Bibliographic Details
Main Authors: Robert M. Levine, Kristen E. Fogaren, Johna E. Rudzin, Christopher J. Russoniello, Dax C. Soule, Justine M. Whitaker
Format: Article
Language:English
Published: Frontiers Media S.A. 2020-12-01
Series:Frontiers in Marine Science
Subjects:
Online Access:https://www.frontiersin.org/articles/10.3389/fmars.2020.593512/full
id doaj-7cc622ffee10434781ca0664e7031b43
record_format Article
spelling doaj-7cc622ffee10434781ca0664e7031b432020-12-08T08:35:10ZengFrontiers Media S.A.Frontiers in Marine Science2296-77452020-12-01710.3389/fmars.2020.593512593512Open Data, Collaborative Working Platforms, and Interdisciplinary Collaboration: Building an Early Career Scientist Community of Practice to Leverage Ocean Observatories Initiative Data to Address Critical Questions in Marine ScienceRobert M. Levine0Kristen E. Fogaren1Johna E. Rudzin2Christopher J. Russoniello3Dax C. Soule4Justine M. Whitaker5School of Oceanography, University of Washington, Seattle, WA, United StatesCollege of Earth, Ocean, and Atmospheric Science, Oregon State University, Corvallis, OR, United StatesNational Research Council, U.S. Naval Research Laboratory, Monterey, CA, United StatesDepartment of Geology and Geography, West Virginia University, Morgantown, WV, United StatesSchool of Earth and Environmental Sciences, Queens College – CUNY, Flushing, NY, United StatesDepartment of Biological Sciences, Nicholls State University, Thibodaux, LA, United StatesOcean observing systems are well-recognized as platforms for long-term monitoring of near-shore and remote locations in the global ocean. High-quality observatory data is freely available and accessible to all members of the global oceanographic community—a democratization of data that is particularly useful for early career scientists (ECS), enabling ECS to conduct research independent of traditional funding models or access to laboratory and field equipment. The concurrent collection of distinct data types with relevance for oceanographic disciplines including physics, chemistry, biology, and geology yields a unique incubator for cutting-edge, timely, interdisciplinary research. These data are both an opportunity and an incentive for ECS to develop the computational skills and collaborative relationships necessary to interpret large data sets. Here, we use observatory data to demonstrate the potential for these interdisciplinary approaches by presenting a case study on the water-column response to anomalous atmospheric events (i.e., major storms) on the shelf of the Mid-Atlantic Bight southwest of Cape Cod, United States. Using data from the Ocean Observatories Initiative (OOI) Pioneer Array, we applied a simple data mining method to identify anomalous atmospheric events over a four-year period. Two closely occurring storm events in late 2018 were then selected to explore the dynamics of water-column response using mooring data from across the array. The comprehensive ECS knowledge base and computational skill sets allowed identification of data issues in the OOI data streams and technologically sound characterization of data from multiple sensor packages to broadly characterize ocean-atmosphere interactions. An ECS-driven approach that emphasizes collaborative and interdisciplinary working practices adds significant value to existing datasets and programs such as OOI and has the potential to produce meaningful scientific advances. Future success in utilizing ocean observatory data requires continued investment in ECS education, collaboration, and research; in turn, the ECS community provides feedback, develops knowledge, and builds new tools to enhance the value of ocean observing systems. These findings present an argument for building a community of practice to augment ECS ocean scientist skills and foster collaborations to extend the context, reach, and societal utility of ocean science.https://www.frontiersin.org/articles/10.3389/fmars.2020.593512/fullbig dataocean observingocean responsedata miningCOVID-19 pandemicremote collaboration
collection DOAJ
language English
format Article
sources DOAJ
author Robert M. Levine
Kristen E. Fogaren
Johna E. Rudzin
Christopher J. Russoniello
Dax C. Soule
Justine M. Whitaker
spellingShingle Robert M. Levine
Kristen E. Fogaren
Johna E. Rudzin
Christopher J. Russoniello
Dax C. Soule
Justine M. Whitaker
Open Data, Collaborative Working Platforms, and Interdisciplinary Collaboration: Building an Early Career Scientist Community of Practice to Leverage Ocean Observatories Initiative Data to Address Critical Questions in Marine Science
Frontiers in Marine Science
big data
ocean observing
ocean response
data mining
COVID-19 pandemic
remote collaboration
author_facet Robert M. Levine
Kristen E. Fogaren
Johna E. Rudzin
Christopher J. Russoniello
Dax C. Soule
Justine M. Whitaker
author_sort Robert M. Levine
title Open Data, Collaborative Working Platforms, and Interdisciplinary Collaboration: Building an Early Career Scientist Community of Practice to Leverage Ocean Observatories Initiative Data to Address Critical Questions in Marine Science
title_short Open Data, Collaborative Working Platforms, and Interdisciplinary Collaboration: Building an Early Career Scientist Community of Practice to Leverage Ocean Observatories Initiative Data to Address Critical Questions in Marine Science
title_full Open Data, Collaborative Working Platforms, and Interdisciplinary Collaboration: Building an Early Career Scientist Community of Practice to Leverage Ocean Observatories Initiative Data to Address Critical Questions in Marine Science
title_fullStr Open Data, Collaborative Working Platforms, and Interdisciplinary Collaboration: Building an Early Career Scientist Community of Practice to Leverage Ocean Observatories Initiative Data to Address Critical Questions in Marine Science
title_full_unstemmed Open Data, Collaborative Working Platforms, and Interdisciplinary Collaboration: Building an Early Career Scientist Community of Practice to Leverage Ocean Observatories Initiative Data to Address Critical Questions in Marine Science
title_sort open data, collaborative working platforms, and interdisciplinary collaboration: building an early career scientist community of practice to leverage ocean observatories initiative data to address critical questions in marine science
publisher Frontiers Media S.A.
series Frontiers in Marine Science
issn 2296-7745
publishDate 2020-12-01
description Ocean observing systems are well-recognized as platforms for long-term monitoring of near-shore and remote locations in the global ocean. High-quality observatory data is freely available and accessible to all members of the global oceanographic community—a democratization of data that is particularly useful for early career scientists (ECS), enabling ECS to conduct research independent of traditional funding models or access to laboratory and field equipment. The concurrent collection of distinct data types with relevance for oceanographic disciplines including physics, chemistry, biology, and geology yields a unique incubator for cutting-edge, timely, interdisciplinary research. These data are both an opportunity and an incentive for ECS to develop the computational skills and collaborative relationships necessary to interpret large data sets. Here, we use observatory data to demonstrate the potential for these interdisciplinary approaches by presenting a case study on the water-column response to anomalous atmospheric events (i.e., major storms) on the shelf of the Mid-Atlantic Bight southwest of Cape Cod, United States. Using data from the Ocean Observatories Initiative (OOI) Pioneer Array, we applied a simple data mining method to identify anomalous atmospheric events over a four-year period. Two closely occurring storm events in late 2018 were then selected to explore the dynamics of water-column response using mooring data from across the array. The comprehensive ECS knowledge base and computational skill sets allowed identification of data issues in the OOI data streams and technologically sound characterization of data from multiple sensor packages to broadly characterize ocean-atmosphere interactions. An ECS-driven approach that emphasizes collaborative and interdisciplinary working practices adds significant value to existing datasets and programs such as OOI and has the potential to produce meaningful scientific advances. Future success in utilizing ocean observatory data requires continued investment in ECS education, collaboration, and research; in turn, the ECS community provides feedback, develops knowledge, and builds new tools to enhance the value of ocean observing systems. These findings present an argument for building a community of practice to augment ECS ocean scientist skills and foster collaborations to extend the context, reach, and societal utility of ocean science.
topic big data
ocean observing
ocean response
data mining
COVID-19 pandemic
remote collaboration
url https://www.frontiersin.org/articles/10.3389/fmars.2020.593512/full
work_keys_str_mv AT robertmlevine opendatacollaborativeworkingplatformsandinterdisciplinarycollaborationbuildinganearlycareerscientistcommunityofpracticetoleverageoceanobservatoriesinitiativedatatoaddresscriticalquestionsinmarinescience
AT kristenefogaren opendatacollaborativeworkingplatformsandinterdisciplinarycollaborationbuildinganearlycareerscientistcommunityofpracticetoleverageoceanobservatoriesinitiativedatatoaddresscriticalquestionsinmarinescience
AT johnaerudzin opendatacollaborativeworkingplatformsandinterdisciplinarycollaborationbuildinganearlycareerscientistcommunityofpracticetoleverageoceanobservatoriesinitiativedatatoaddresscriticalquestionsinmarinescience
AT christopherjrussoniello opendatacollaborativeworkingplatformsandinterdisciplinarycollaborationbuildinganearlycareerscientistcommunityofpracticetoleverageoceanobservatoriesinitiativedatatoaddresscriticalquestionsinmarinescience
AT daxcsoule opendatacollaborativeworkingplatformsandinterdisciplinarycollaborationbuildinganearlycareerscientistcommunityofpracticetoleverageoceanobservatoriesinitiativedatatoaddresscriticalquestionsinmarinescience
AT justinemwhitaker opendatacollaborativeworkingplatformsandinterdisciplinarycollaborationbuildinganearlycareerscientistcommunityofpracticetoleverageoceanobservatoriesinitiativedatatoaddresscriticalquestionsinmarinescience
_version_ 1724390858562732032