A rainwater control optimization design approach for airports based on a self-organizing feature map neural network model.
To address the problems of high overflow rate of pipe network inspection well and low drainage efficiency, a rainwater control optimization design approach based on a self-organizing feature map neural network model (SOFM) was proposed in this paper. These problems are caused by low precision parame...
Main Authors: | , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Public Library of Science (PLoS)
2020-01-01
|
Series: | PLoS ONE |
Online Access: | https://doi.org/10.1371/journal.pone.0227901 |
id |
doaj-7cc33abe3da04cb4a3c06d6098fa3e24 |
---|---|
record_format |
Article |
spelling |
doaj-7cc33abe3da04cb4a3c06d6098fa3e242021-03-03T21:31:37ZengPublic Library of Science (PLoS)PLoS ONE1932-62032020-01-01151e022790110.1371/journal.pone.0227901A rainwater control optimization design approach for airports based on a self-organizing feature map neural network model.Dongwei QiuHao XuDean LuoQing YeShaofu LiTong WangKeliang DingTo address the problems of high overflow rate of pipe network inspection well and low drainage efficiency, a rainwater control optimization design approach based on a self-organizing feature map neural network model (SOFM) was proposed in this paper. These problems are caused by low precision parameter design in various rainwater control measures such as the diameter of the rainwater pipe network and the green roof area ratio. This system is to be combined with the newly built rainwater pipe control optimization design project of China International Airport in Daxing District of Beijing, China. Through the optimization adjustment of the pipe network parameters such as the diameter of the rainwater pipe network, the slope of the pipeline, and the green infrastructure (GI) parameters such as the sinking green area and the green roof area, reasonable control of airport rainfall and the construction of sustainable drainage systems can be achieved. This research indicates that compared with the result of the drainage design under the initial value of the parameter, the green roof model and the conceptual model of the mesoscale sustainable drainage system, in the case of a hundred-year torrential rainstorm, the overflow rate of pipe network inspection wells has reduced by 36% to 67.5%, the efficiency of drainage has increased by 26.3% to 61.7%, which achieves the requirements for reasonable control of airport rainwater and building a sponge airport and a sustainable drainage system.https://doi.org/10.1371/journal.pone.0227901 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Dongwei Qiu Hao Xu Dean Luo Qing Ye Shaofu Li Tong Wang Keliang Ding |
spellingShingle |
Dongwei Qiu Hao Xu Dean Luo Qing Ye Shaofu Li Tong Wang Keliang Ding A rainwater control optimization design approach for airports based on a self-organizing feature map neural network model. PLoS ONE |
author_facet |
Dongwei Qiu Hao Xu Dean Luo Qing Ye Shaofu Li Tong Wang Keliang Ding |
author_sort |
Dongwei Qiu |
title |
A rainwater control optimization design approach for airports based on a self-organizing feature map neural network model. |
title_short |
A rainwater control optimization design approach for airports based on a self-organizing feature map neural network model. |
title_full |
A rainwater control optimization design approach for airports based on a self-organizing feature map neural network model. |
title_fullStr |
A rainwater control optimization design approach for airports based on a self-organizing feature map neural network model. |
title_full_unstemmed |
A rainwater control optimization design approach for airports based on a self-organizing feature map neural network model. |
title_sort |
rainwater control optimization design approach for airports based on a self-organizing feature map neural network model. |
publisher |
Public Library of Science (PLoS) |
series |
PLoS ONE |
issn |
1932-6203 |
publishDate |
2020-01-01 |
description |
To address the problems of high overflow rate of pipe network inspection well and low drainage efficiency, a rainwater control optimization design approach based on a self-organizing feature map neural network model (SOFM) was proposed in this paper. These problems are caused by low precision parameter design in various rainwater control measures such as the diameter of the rainwater pipe network and the green roof area ratio. This system is to be combined with the newly built rainwater pipe control optimization design project of China International Airport in Daxing District of Beijing, China. Through the optimization adjustment of the pipe network parameters such as the diameter of the rainwater pipe network, the slope of the pipeline, and the green infrastructure (GI) parameters such as the sinking green area and the green roof area, reasonable control of airport rainfall and the construction of sustainable drainage systems can be achieved. This research indicates that compared with the result of the drainage design under the initial value of the parameter, the green roof model and the conceptual model of the mesoscale sustainable drainage system, in the case of a hundred-year torrential rainstorm, the overflow rate of pipe network inspection wells has reduced by 36% to 67.5%, the efficiency of drainage has increased by 26.3% to 61.7%, which achieves the requirements for reasonable control of airport rainwater and building a sponge airport and a sustainable drainage system. |
url |
https://doi.org/10.1371/journal.pone.0227901 |
work_keys_str_mv |
AT dongweiqiu arainwatercontroloptimizationdesignapproachforairportsbasedonaselforganizingfeaturemapneuralnetworkmodel AT haoxu arainwatercontroloptimizationdesignapproachforairportsbasedonaselforganizingfeaturemapneuralnetworkmodel AT deanluo arainwatercontroloptimizationdesignapproachforairportsbasedonaselforganizingfeaturemapneuralnetworkmodel AT qingye arainwatercontroloptimizationdesignapproachforairportsbasedonaselforganizingfeaturemapneuralnetworkmodel AT shaofuli arainwatercontroloptimizationdesignapproachforairportsbasedonaselforganizingfeaturemapneuralnetworkmodel AT tongwang arainwatercontroloptimizationdesignapproachforairportsbasedonaselforganizingfeaturemapneuralnetworkmodel AT keliangding arainwatercontroloptimizationdesignapproachforairportsbasedonaselforganizingfeaturemapneuralnetworkmodel AT dongweiqiu rainwatercontroloptimizationdesignapproachforairportsbasedonaselforganizingfeaturemapneuralnetworkmodel AT haoxu rainwatercontroloptimizationdesignapproachforairportsbasedonaselforganizingfeaturemapneuralnetworkmodel AT deanluo rainwatercontroloptimizationdesignapproachforairportsbasedonaselforganizingfeaturemapneuralnetworkmodel AT qingye rainwatercontroloptimizationdesignapproachforairportsbasedonaselforganizingfeaturemapneuralnetworkmodel AT shaofuli rainwatercontroloptimizationdesignapproachforairportsbasedonaselforganizingfeaturemapneuralnetworkmodel AT tongwang rainwatercontroloptimizationdesignapproachforairportsbasedonaselforganizingfeaturemapneuralnetworkmodel AT keliangding rainwatercontroloptimizationdesignapproachforairportsbasedonaselforganizingfeaturemapneuralnetworkmodel |
_version_ |
1714816390406340608 |