Novel Gd nanoparticles enhance vascular contrast for high-resolution magnetic resonance imaging.

Gadolinium (Gd), with its 7 unpaired electrons in 4f orbitals that provide a very large magnetic moment, is proven to be among the best agents for contrast enhanced MRI. Unfortunately, the most potent MR contrast agent based on Gd requires relatively high doses of Gd. The Gd-chelated to diethylene-t...

Full description

Bibliographic Details
Main Authors: Tot Bui, Jeff Stevenson, John Hoekman, Shanrong Zhang, Kenneth Maravilla, Rodney J Y Ho
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2010-09-01
Series:PLoS ONE
Online Access:http://europepmc.org/articles/PMC2948015?pdf=render
id doaj-7cb49c8e607048b6988e823604d193d2
record_format Article
spelling doaj-7cb49c8e607048b6988e823604d193d22020-11-25T02:06:34ZengPublic Library of Science (PLoS)PLoS ONE1932-62032010-09-015910.1371/journal.pone.0013082Novel Gd nanoparticles enhance vascular contrast for high-resolution magnetic resonance imaging.Tot BuiJeff StevensonJohn HoekmanShanrong ZhangKenneth MaravillaRodney J Y HoGadolinium (Gd), with its 7 unpaired electrons in 4f orbitals that provide a very large magnetic moment, is proven to be among the best agents for contrast enhanced MRI. Unfortunately, the most potent MR contrast agent based on Gd requires relatively high doses of Gd. The Gd-chelated to diethylene-triamine-penta-acetic acid (DTPA), or other derivatives (at 0.1 mmole/kg recommended dose), distribute broadly into tissues and clear through the kidney. These contrast agents carry the risk of Nephrogenic Systemic Fibrosis (NSF), particularly in kidney impaired subjects. Thus, Gd contrast agents that produce higher resolution images using a much lower Gd dose could address both imaging sensitivity and Gd safety.To determine whether a biocompatible lipid nanoparticle with surface bound Gd can improve MRI contrast sensitivity, we constructed Gd-lipid nanoparticles (Gd-LNP) containing lipid bound DTPA and Gd. The Gd-LNP were intravenously administered to rats and MR images collected. We found that Gd in Gd-LNP produced a greater than 33-fold higher longitudinal (T(1)) relaxivity, r(1), constant than the current FDA approved Gd-chelated contrast agents. Intravenous administration of these Gd-LNP at only 3% of the recommended clinical Gd dose produced MRI signal-to-noise ratios of greater than 300 in all vasculatures. Unlike current Gd contrast agents, these Gd-LNP stably retained Gd in normal vasculature, and are eliminated predominately through the biliary, instead of the renal system. Gd-LNP did not appear to accumulate in the liver or kidney, and was eliminated completely within 24 hrs.The novel Gd-nanoparticles provide high quality contrast enhanced vascular MRI at 97% reduced dose of Gd and do not rely on renal clearance. This new agent is likely to be suitable for patients exhibiting varying degrees of renal impairment. The simple and adaptive nanoparticle design could accommodate ligand or receptor coating for drug delivery optimization and in vivo drug-target definition in system biology profiling, increasing the margin of safety in treatment of cancers and other diseases.http://europepmc.org/articles/PMC2948015?pdf=render
collection DOAJ
language English
format Article
sources DOAJ
author Tot Bui
Jeff Stevenson
John Hoekman
Shanrong Zhang
Kenneth Maravilla
Rodney J Y Ho
spellingShingle Tot Bui
Jeff Stevenson
John Hoekman
Shanrong Zhang
Kenneth Maravilla
Rodney J Y Ho
Novel Gd nanoparticles enhance vascular contrast for high-resolution magnetic resonance imaging.
PLoS ONE
author_facet Tot Bui
Jeff Stevenson
John Hoekman
Shanrong Zhang
Kenneth Maravilla
Rodney J Y Ho
author_sort Tot Bui
title Novel Gd nanoparticles enhance vascular contrast for high-resolution magnetic resonance imaging.
title_short Novel Gd nanoparticles enhance vascular contrast for high-resolution magnetic resonance imaging.
title_full Novel Gd nanoparticles enhance vascular contrast for high-resolution magnetic resonance imaging.
title_fullStr Novel Gd nanoparticles enhance vascular contrast for high-resolution magnetic resonance imaging.
title_full_unstemmed Novel Gd nanoparticles enhance vascular contrast for high-resolution magnetic resonance imaging.
title_sort novel gd nanoparticles enhance vascular contrast for high-resolution magnetic resonance imaging.
publisher Public Library of Science (PLoS)
series PLoS ONE
issn 1932-6203
publishDate 2010-09-01
description Gadolinium (Gd), with its 7 unpaired electrons in 4f orbitals that provide a very large magnetic moment, is proven to be among the best agents for contrast enhanced MRI. Unfortunately, the most potent MR contrast agent based on Gd requires relatively high doses of Gd. The Gd-chelated to diethylene-triamine-penta-acetic acid (DTPA), or other derivatives (at 0.1 mmole/kg recommended dose), distribute broadly into tissues and clear through the kidney. These contrast agents carry the risk of Nephrogenic Systemic Fibrosis (NSF), particularly in kidney impaired subjects. Thus, Gd contrast agents that produce higher resolution images using a much lower Gd dose could address both imaging sensitivity and Gd safety.To determine whether a biocompatible lipid nanoparticle with surface bound Gd can improve MRI contrast sensitivity, we constructed Gd-lipid nanoparticles (Gd-LNP) containing lipid bound DTPA and Gd. The Gd-LNP were intravenously administered to rats and MR images collected. We found that Gd in Gd-LNP produced a greater than 33-fold higher longitudinal (T(1)) relaxivity, r(1), constant than the current FDA approved Gd-chelated contrast agents. Intravenous administration of these Gd-LNP at only 3% of the recommended clinical Gd dose produced MRI signal-to-noise ratios of greater than 300 in all vasculatures. Unlike current Gd contrast agents, these Gd-LNP stably retained Gd in normal vasculature, and are eliminated predominately through the biliary, instead of the renal system. Gd-LNP did not appear to accumulate in the liver or kidney, and was eliminated completely within 24 hrs.The novel Gd-nanoparticles provide high quality contrast enhanced vascular MRI at 97% reduced dose of Gd and do not rely on renal clearance. This new agent is likely to be suitable for patients exhibiting varying degrees of renal impairment. The simple and adaptive nanoparticle design could accommodate ligand or receptor coating for drug delivery optimization and in vivo drug-target definition in system biology profiling, increasing the margin of safety in treatment of cancers and other diseases.
url http://europepmc.org/articles/PMC2948015?pdf=render
work_keys_str_mv AT totbui novelgdnanoparticlesenhancevascularcontrastforhighresolutionmagneticresonanceimaging
AT jeffstevenson novelgdnanoparticlesenhancevascularcontrastforhighresolutionmagneticresonanceimaging
AT johnhoekman novelgdnanoparticlesenhancevascularcontrastforhighresolutionmagneticresonanceimaging
AT shanrongzhang novelgdnanoparticlesenhancevascularcontrastforhighresolutionmagneticresonanceimaging
AT kennethmaravilla novelgdnanoparticlesenhancevascularcontrastforhighresolutionmagneticresonanceimaging
AT rodneyjyho novelgdnanoparticlesenhancevascularcontrastforhighresolutionmagneticresonanceimaging
_version_ 1724933172544667648