Dynamic Response of Steel Box Girder under Internal Blast Loading
This paper aims at investigating the dynamic response of the steel box girder under internal blast loads through experiments and numerical study. Two blast experiments of steel box models under internal explosion were conducted, and then, the numerical methods are introduced and validated. The dynam...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Hindawi Limited
2018-01-01
|
Series: | Advances in Civil Engineering |
Online Access: | http://dx.doi.org/10.1155/2018/9676298 |
id |
doaj-7c9ea1776b3b4be9abacec83153af22d |
---|---|
record_format |
Article |
spelling |
doaj-7c9ea1776b3b4be9abacec83153af22d2020-11-24T22:15:39ZengHindawi LimitedAdvances in Civil Engineering1687-80861687-80942018-01-01201810.1155/2018/96762989676298Dynamic Response of Steel Box Girder under Internal Blast LoadingShujian Yao0Nan Zhao1Zhigang Jiang2Duo Zhang3Fangyun Lu4School of Traffic and Transportation Engineering, Central South University, Changsha, Hunan 410075, ChinaSchool of Traffic and Transportation Engineering, Central South University, Changsha, Hunan 410075, ChinaCollege of Basic Education, National University of Defense Technology, Changsha, Hunan 410072, ChinaCollege of Science, National University of Defense Technology, Changsha, Hunan 410073, ChinaCollege of Science, National University of Defense Technology, Changsha, Hunan 410073, ChinaThis paper aims at investigating the dynamic response of the steel box girder under internal blast loads through experiments and numerical study. Two blast experiments of steel box models under internal explosion were conducted, and then, the numerical methods are introduced and validated. The dynamic response process and propagation of the internal shock wave of a steel box girder under internal blast loading were investigated. The results show that the propagation of the internal shock wave is very complicated. A multi-impact effect is observed since the shock waves are restricted by the box. In addition, the failure modes and the influence of blast position as well as explosive mass were discussed. The holistic failure mode is observed as local failure, and there are two failure modes for the steel box girder's components, large plastic deformation and rupture. The damage features are closely related to the explosive position, and the enhanced shock wave in the corner of the girder will cause severe damage. With the increasing TNT mass, the crack diameter and the deformation degree are all increased. The longitudinal stiffeners restrict the damage to develop in the transverse direction while increase the crack diameter along the stiffener direction.http://dx.doi.org/10.1155/2018/9676298 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Shujian Yao Nan Zhao Zhigang Jiang Duo Zhang Fangyun Lu |
spellingShingle |
Shujian Yao Nan Zhao Zhigang Jiang Duo Zhang Fangyun Lu Dynamic Response of Steel Box Girder under Internal Blast Loading Advances in Civil Engineering |
author_facet |
Shujian Yao Nan Zhao Zhigang Jiang Duo Zhang Fangyun Lu |
author_sort |
Shujian Yao |
title |
Dynamic Response of Steel Box Girder under Internal Blast Loading |
title_short |
Dynamic Response of Steel Box Girder under Internal Blast Loading |
title_full |
Dynamic Response of Steel Box Girder under Internal Blast Loading |
title_fullStr |
Dynamic Response of Steel Box Girder under Internal Blast Loading |
title_full_unstemmed |
Dynamic Response of Steel Box Girder under Internal Blast Loading |
title_sort |
dynamic response of steel box girder under internal blast loading |
publisher |
Hindawi Limited |
series |
Advances in Civil Engineering |
issn |
1687-8086 1687-8094 |
publishDate |
2018-01-01 |
description |
This paper aims at investigating the dynamic response of the steel box girder under internal blast loads through experiments and numerical study. Two blast experiments of steel box models under internal explosion were conducted, and then, the numerical methods are introduced and validated. The dynamic response process and propagation of the internal shock wave of a steel box girder under internal blast loading were investigated. The results show that the propagation of the internal shock wave is very complicated. A multi-impact effect is observed since the shock waves are restricted by the box. In addition, the failure modes and the influence of blast position as well as explosive mass were discussed. The holistic failure mode is observed as local failure, and there are two failure modes for the steel box girder's components, large plastic deformation and rupture. The damage features are closely related to the explosive position, and the enhanced shock wave in the corner of the girder will cause severe damage. With the increasing TNT mass, the crack diameter and the deformation degree are all increased. The longitudinal stiffeners restrict the damage to develop in the transverse direction while increase the crack diameter along the stiffener direction. |
url |
http://dx.doi.org/10.1155/2018/9676298 |
work_keys_str_mv |
AT shujianyao dynamicresponseofsteelboxgirderunderinternalblastloading AT nanzhao dynamicresponseofsteelboxgirderunderinternalblastloading AT zhigangjiang dynamicresponseofsteelboxgirderunderinternalblastloading AT duozhang dynamicresponseofsteelboxgirderunderinternalblastloading AT fangyunlu dynamicresponseofsteelboxgirderunderinternalblastloading |
_version_ |
1725793996370870272 |