Empirical Investigation of the Hygrothermal Diffusion Properties of Permeable Building Membranes Subjected to Variable Relative Humidity Condition

Hygrothermal modelling is increasingly used to inform building envelope design. A key input for these calculations is the material’s vapour diffusion properties. Respecting a growing international concern, this research has questioned the appropriateness of the current test method to establish const...

Full description

Bibliographic Details
Main Authors: Toba Samuel Olaoye, Mark Dewsbury, Hartwig Künzel
Format: Article
Language:English
Published: MDPI AG 2021-07-01
Series:Energies
Subjects:
Online Access:https://www.mdpi.com/1996-1073/14/13/4053
Description
Summary:Hygrothermal modelling is increasingly used to inform building envelope design. A key input for these calculations is the material’s vapour diffusion properties. Respecting a growing international concern, this research has questioned the appropriateness of the current test method to establish construction material for vapour diffusion properties. This article reports on the empirical measurement of the vapour diffusion properties of two vapour-permeable building membranes commonly used in Australia residential systems when subjected to variable relative humidity conditions. The method involved completing dry cup and wet cup standard tests as specified in ISO 12572, (23 °C and 50% relative humidity RH). Further tests were then conducted as temperature remained at 23 °C but the relative humidity changed to 35%, 65% and 80%, respectively, in order to know if the diffusion properties are the same or change with varying relative humidity. The results from the wet cup and dry cup tests under different relative humidity conditions were non-linear and different. These results indicate vapour-permeable membranes behave differently when exposed to different relative humidity conditions. In conclusion, this research demonstrates that the current vapour resistivity test method is inadequate, hence the need to establish more detailed diffusion resistivity properties in different humidity ranges that represent conditions experienced within a building’s external envelope.
ISSN:1996-1073