Tracheal branching in ants is area-decreasing, violating a central assumption of network transport models.

The structure of tubular transport networks is thought to underlie much of biological regularity, from individuals to ecosystems. A core assumption of transport network models is either area-preserving or area-increasing branching, such that the summed cross-sectional area of all child branches is e...

Full description

Bibliographic Details
Main Authors: Ian J Aitkenhead, Grant A Duffy, Citsabehsan Devendran, Michael R Kearney, Adrian Neild, Steven L Chown
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2020-04-01
Series:PLoS Computational Biology
Online Access:https://doi.org/10.1371/journal.pcbi.1007853
Description
Summary:The structure of tubular transport networks is thought to underlie much of biological regularity, from individuals to ecosystems. A core assumption of transport network models is either area-preserving or area-increasing branching, such that the summed cross-sectional area of all child branches is equal to or greater than the cross-sectional area of their respective parent branch. For insects, the most diverse group of animals, the assumption of area-preserving branching of tracheae is, however, based on measurements of a single individual and an assumption of gas exchange by diffusion. Here we show that ants exhibit neither area-preserving nor area-increasing branching in their abdominal tracheal systems. We find for 20 species of ants that the sum of child tracheal cross-sectional areas is typically less than that of the parent branch (area-decreasing). The radius, rather than the area, of the parent branch is conserved across the sum of child branches. Interpretation of the tracheal system as one optimized for the release of carbon dioxide, while readily catering to oxygen demand, explains the branching pattern. Our results, together with widespread demonstration that gas exchange in insects includes, and is often dominated by, convection, indicate that for generality, network transport models must include consideration of systems with different architectures.
ISSN:1553-734X
1553-7358