Summary: | Gas-lubricated microbearings are widely applied in multiple fields due to their advantages of high-speed, low friction level and other features. The operating environment of microbearings is complex, and the difference of temperature has an important influence on their comprehensive performance. In this investigation, FEM (finite element method) is employed to investigate the static, dynamic and limit characteristics of microbearings lubricated by different kinds of gas at different temperatures. The results show that the rise of temperature leads to the decline of equivalent viscosity of gas, which weakens the load capacity of microbearings, and furthermore, affects the operating stability of microbearings. The dynamic performances of microbearings at different temperatures are very different, and the two dynamic limit characteristics are more sensitive to temperature when it changes.
|