Evaluation of the Diagnostic Power of Thermography in Breast Cancer Using Bayesian Network Classifiers

Breast cancer is one of the leading causes of death among women worldwide. There are a number of techniques used for diagnosing this disease: mammography, ultrasound, and biopsy, among others. Each of these has well-known advantages and disadvantages. A relatively new method, based on the temperatur...

Full description

Bibliographic Details
Main Authors: Cruz-Ramírez Nicandro, Mezura-Montes Efrén, Ameca-Alducin María Yaneli, Martín-Del-Campo-Mena Enrique, Acosta-Mesa Héctor Gabriel, Pérez-Castro Nancy, Guerra-Hernández Alejandro, Hoyos-Rivera Guillermo de Jesús, Barrientos-Martínez Rocío Erandi
Format: Article
Language:English
Published: Hindawi Limited 2013-01-01
Series:Computational and Mathematical Methods in Medicine
Online Access:http://dx.doi.org/10.1155/2013/264246
id doaj-7c3950fc310740ec83f9ba2a876a6eda
record_format Article
spelling doaj-7c3950fc310740ec83f9ba2a876a6eda2020-11-24T22:37:40ZengHindawi LimitedComputational and Mathematical Methods in Medicine1748-670X1748-67182013-01-01201310.1155/2013/264246264246Evaluation of the Diagnostic Power of Thermography in Breast Cancer Using Bayesian Network ClassifiersCruz-Ramírez Nicandro0Mezura-Montes Efrén1Ameca-Alducin María Yaneli2Martín-Del-Campo-Mena Enrique3Acosta-Mesa Héctor Gabriel4Pérez-Castro Nancy5Guerra-Hernández Alejandro6Hoyos-Rivera Guillermo de Jesús7Barrientos-Martínez Rocío Erandi8Departamento de Inteligencia Artificial, Universidad Veracruzana, Sebastián Camacho 5, Centro, 91000 Xalapa, VZ, MexicoDepartamento de Inteligencia Artificial, Universidad Veracruzana, Sebastián Camacho 5, Centro, 91000 Xalapa, VZ, MexicoDepartamento de Inteligencia Artificial, Universidad Veracruzana, Sebastián Camacho 5, Centro, 91000 Xalapa, VZ, MexicoCentro Estatal de Cancerología: Miguel Dorantes Mesa, Aguascalientes 100, Progreso Macuiltepetl, 91130 Xalapa, VZ, MexicoDepartamento de Inteligencia Artificial, Universidad Veracruzana, Sebastián Camacho 5, Centro, 91000 Xalapa, VZ, MexicoLaboratorio Nacional de Informática Avanzada (LANIA) A.C. Rébsamen 80, Centro, 91000 Xalapa, VZ, MexicoDepartamento de Inteligencia Artificial, Universidad Veracruzana, Sebastián Camacho 5, Centro, 91000 Xalapa, VZ, MexicoDepartamento de Inteligencia Artificial, Universidad Veracruzana, Sebastián Camacho 5, Centro, 91000 Xalapa, VZ, MexicoDepartamento de Inteligencia Artificial, Universidad Veracruzana, Sebastián Camacho 5, Centro, 91000 Xalapa, VZ, MexicoBreast cancer is one of the leading causes of death among women worldwide. There are a number of techniques used for diagnosing this disease: mammography, ultrasound, and biopsy, among others. Each of these has well-known advantages and disadvantages. A relatively new method, based on the temperature a tumor may produce, has recently been explored: thermography. In this paper, we will evaluate the diagnostic power of thermography in breast cancer using Bayesian network classifiers. We will show how the information provided by the thermal image can be used in order to characterize patients suspected of having cancer. Our main contribution is the proposal of a score, based on the aforementioned information, that could help distinguish sick patients from healthy ones. Our main results suggest the potential of this technique in such a goal but also show its main limitations that have to be overcome to consider it as an effective diagnosis complementary tool.http://dx.doi.org/10.1155/2013/264246
collection DOAJ
language English
format Article
sources DOAJ
author Cruz-Ramírez Nicandro
Mezura-Montes Efrén
Ameca-Alducin María Yaneli
Martín-Del-Campo-Mena Enrique
Acosta-Mesa Héctor Gabriel
Pérez-Castro Nancy
Guerra-Hernández Alejandro
Hoyos-Rivera Guillermo de Jesús
Barrientos-Martínez Rocío Erandi
spellingShingle Cruz-Ramírez Nicandro
Mezura-Montes Efrén
Ameca-Alducin María Yaneli
Martín-Del-Campo-Mena Enrique
Acosta-Mesa Héctor Gabriel
Pérez-Castro Nancy
Guerra-Hernández Alejandro
Hoyos-Rivera Guillermo de Jesús
Barrientos-Martínez Rocío Erandi
Evaluation of the Diagnostic Power of Thermography in Breast Cancer Using Bayesian Network Classifiers
Computational and Mathematical Methods in Medicine
author_facet Cruz-Ramírez Nicandro
Mezura-Montes Efrén
Ameca-Alducin María Yaneli
Martín-Del-Campo-Mena Enrique
Acosta-Mesa Héctor Gabriel
Pérez-Castro Nancy
Guerra-Hernández Alejandro
Hoyos-Rivera Guillermo de Jesús
Barrientos-Martínez Rocío Erandi
author_sort Cruz-Ramírez Nicandro
title Evaluation of the Diagnostic Power of Thermography in Breast Cancer Using Bayesian Network Classifiers
title_short Evaluation of the Diagnostic Power of Thermography in Breast Cancer Using Bayesian Network Classifiers
title_full Evaluation of the Diagnostic Power of Thermography in Breast Cancer Using Bayesian Network Classifiers
title_fullStr Evaluation of the Diagnostic Power of Thermography in Breast Cancer Using Bayesian Network Classifiers
title_full_unstemmed Evaluation of the Diagnostic Power of Thermography in Breast Cancer Using Bayesian Network Classifiers
title_sort evaluation of the diagnostic power of thermography in breast cancer using bayesian network classifiers
publisher Hindawi Limited
series Computational and Mathematical Methods in Medicine
issn 1748-670X
1748-6718
publishDate 2013-01-01
description Breast cancer is one of the leading causes of death among women worldwide. There are a number of techniques used for diagnosing this disease: mammography, ultrasound, and biopsy, among others. Each of these has well-known advantages and disadvantages. A relatively new method, based on the temperature a tumor may produce, has recently been explored: thermography. In this paper, we will evaluate the diagnostic power of thermography in breast cancer using Bayesian network classifiers. We will show how the information provided by the thermal image can be used in order to characterize patients suspected of having cancer. Our main contribution is the proposal of a score, based on the aforementioned information, that could help distinguish sick patients from healthy ones. Our main results suggest the potential of this technique in such a goal but also show its main limitations that have to be overcome to consider it as an effective diagnosis complementary tool.
url http://dx.doi.org/10.1155/2013/264246
work_keys_str_mv AT cruzramireznicandro evaluationofthediagnosticpowerofthermographyinbreastcancerusingbayesiannetworkclassifiers
AT mezuramontesefren evaluationofthediagnosticpowerofthermographyinbreastcancerusingbayesiannetworkclassifiers
AT amecaalducinmariayaneli evaluationofthediagnosticpowerofthermographyinbreastcancerusingbayesiannetworkclassifiers
AT martindelcampomenaenrique evaluationofthediagnosticpowerofthermographyinbreastcancerusingbayesiannetworkclassifiers
AT acostamesahectorgabriel evaluationofthediagnosticpowerofthermographyinbreastcancerusingbayesiannetworkclassifiers
AT perezcastronancy evaluationofthediagnosticpowerofthermographyinbreastcancerusingbayesiannetworkclassifiers
AT guerrahernandezalejandro evaluationofthediagnosticpowerofthermographyinbreastcancerusingbayesiannetworkclassifiers
AT hoyosriveraguillermodejesus evaluationofthediagnosticpowerofthermographyinbreastcancerusingbayesiannetworkclassifiers
AT barrientosmartinezrocioerandi evaluationofthediagnosticpowerofthermographyinbreastcancerusingbayesiannetworkclassifiers
_version_ 1725716042247831552