A Salt-Assisted Combustion Method to Prepare Well-Dispersed Octahedral MnCr2O4 Spinel Nanocrystals

Well-dispersed nanocrystalline MnCr2O4 was prepared by a salt-assisted combustion process using low-toxic glycine as fuel and Mn(NO3)2 and Cr(NO3)3·9H2O as raw materials. The obtained products were characterized by X-ray Diffraction (XRD), Fourier Transform Infrared (FT-IR) spectroscopy, Raman spect...

Full description

Bibliographic Details
Main Authors: Yuping Tong, Juntao Ma, Shunbo Zhao, Hongyuan Huo, Hailong Zhang
Format: Article
Language:English
Published: Hindawi Limited 2015-01-01
Series:Journal of Nanomaterials
Online Access:http://dx.doi.org/10.1155/2015/214978
Description
Summary:Well-dispersed nanocrystalline MnCr2O4 was prepared by a salt-assisted combustion process using low-toxic glycine as fuel and Mn(NO3)2 and Cr(NO3)3·9H2O as raw materials. The obtained products were characterized by X-ray Diffraction (XRD), Fourier Transform Infrared (FT-IR) spectroscopy, Raman spectroscopy, Transmission Electron Microscopy (TEM), and Scanning Electron Microscopy (SEM). The fabrication process was monitored by thermogravimetric and differential thermal analysis (TG-DTA). The phase formation process was detected by XRD, and MnCr2O4 single phase with high crystallinity was formed at 700°C. TEM and SEM images revealed that the products were composed of well-dispersed octahedral nanocrystals with an average size of 80 nm. Inert salt-LiCl played an important role in breaking the network structure of agglomerated nanocrystallites.
ISSN:1687-4110
1687-4129