A Salt-Assisted Combustion Method to Prepare Well-Dispersed Octahedral MnCr2O4 Spinel Nanocrystals
Well-dispersed nanocrystalline MnCr2O4 was prepared by a salt-assisted combustion process using low-toxic glycine as fuel and Mn(NO3)2 and Cr(NO3)3·9H2O as raw materials. The obtained products were characterized by X-ray Diffraction (XRD), Fourier Transform Infrared (FT-IR) spectroscopy, Raman spect...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Hindawi Limited
2015-01-01
|
Series: | Journal of Nanomaterials |
Online Access: | http://dx.doi.org/10.1155/2015/214978 |
Summary: | Well-dispersed nanocrystalline MnCr2O4 was prepared by a salt-assisted combustion process using low-toxic glycine as fuel and Mn(NO3)2 and Cr(NO3)3·9H2O as raw materials. The obtained products were characterized by X-ray Diffraction (XRD), Fourier Transform Infrared (FT-IR) spectroscopy, Raman spectroscopy, Transmission Electron Microscopy (TEM), and Scanning Electron Microscopy (SEM). The fabrication process was monitored by thermogravimetric and differential thermal analysis (TG-DTA). The phase formation process was detected by XRD, and MnCr2O4 single phase with high crystallinity was formed at 700°C. TEM and SEM images revealed that the products were composed of well-dispersed octahedral nanocrystals with an average size of 80 nm. Inert salt-LiCl played an important role in breaking the network structure of agglomerated nanocrystallites. |
---|---|
ISSN: | 1687-4110 1687-4129 |