Quantitative Diagnosis of Rotor Vibration Fault Using Process Power Spectrum Entropy and Support Vector Machine Method

To improve the diagnosis capacity of rotor vibration fault in stochastic process, an effective fault diagnosis method (named Process Power Spectrum Entropy (PPSE) and Support Vector Machine (SVM) (PPSE-SVM, for short) method) was proposed. The fault diagnosis model of PPSE-SVM was established by fus...

Full description

Bibliographic Details
Main Authors: Cheng-Wei Fei, Guang-Chen Bai, Wen-Zhong Tang, Shuang Ma
Format: Article
Language:English
Published: Hindawi Limited 2014-01-01
Series:Shock and Vibration
Online Access:http://dx.doi.org/10.1155/2014/957531
Description
Summary:To improve the diagnosis capacity of rotor vibration fault in stochastic process, an effective fault diagnosis method (named Process Power Spectrum Entropy (PPSE) and Support Vector Machine (SVM) (PPSE-SVM, for short) method) was proposed. The fault diagnosis model of PPSE-SVM was established by fusing PPSE method and SVM theory. Based on the simulation experiment of rotor vibration fault, process data for four typical vibration faults (rotor imbalance, shaft misalignment, rotor-stator rubbing, and pedestal looseness) were collected under multipoint (multiple channels) and multispeed. By using PPSE method, the PPSE values of these data were extracted as fault feature vectors to establish the SVM model of rotor vibration fault diagnosis. From rotor vibration fault diagnosis, the results demonstrate that the proposed method possesses high precision, good learning ability, good generalization ability, and strong fault-tolerant ability (robustness) in four aspects of distinguishing fault types, fault severity, fault location, and noise immunity of rotor stochastic vibration. This paper presents a novel method (PPSE-SVM) for rotor vibration fault diagnosis and real-time vibration monitoring. The presented effort is promising to improve the fault diagnosis precision of rotating machinery like gas turbine.
ISSN:1070-9622
1875-9203