Summary: | Band selection (BS) is one of the important topics in hyperspectral image (HSI) processing. Many types of BS algorithms were proposed in the last decade. However, most of them were designed for off-line use. They can only be used with pre-collected data, and are sometimes ineffective for applications that require timeliness, such as disaster prevention or target detection. This paper proposes an online BS method that allows us obtain instant BS results in a progressive manner during HSI data transmission, which is carried out under band-interleaved-by-sample/pixel (BIS/BIP) format. Such a revolutionary method is called progressive sample processing of band selection (PSP-BS). In PSP-BS, BS can be done recursively pixel by pixel, so that the instantaneous BS can be achieved without waiting for all the pixels of an image. To develop a PSP-BS algorithm, we proposed PSP-OMPBS, which adopted the recursive version of a self-sparse regression BS method (OMPBS) as a native algorithm. The experiments conducted on two real hyperspectral images demonstrate that PSP-OMPBS can progressively output the BS with extremely low computing time. In addition, the convergence of BS results during transmission can be further accelerated by using a pre-defined pixel transmission sequence. Such a significant advantage not only allows BS to be done in a real-time manner for the future satellite data downlink, but also determines the BS results in advance, without waiting to receive every pixel of an image.
|