Stability of Maximum Functional Equation and Some Properties of Groups
In this research paper, we deal with the problem of determining the function <inline-formula><math display="inline"><semantics><mrow><mi>χ</mi><mo>:</mo><mi>G</mi><mspace width="3.33333pt"></mspace><mo>...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2020-11-01
|
Series: | Symmetry |
Subjects: | |
Online Access: | https://www.mdpi.com/2073-8994/12/12/1949 |
id |
doaj-7b85df7a2560477f8da0f554ea8f4908 |
---|---|
record_format |
Article |
spelling |
doaj-7b85df7a2560477f8da0f554ea8f49082020-11-27T08:07:50ZengMDPI AGSymmetry2073-89942020-11-01121949194910.3390/sym12121949Stability of Maximum Functional Equation and Some Properties of GroupsMuhammad Sarfraz0Qi Liu1Yongjin Li2School of Mathematics, Sun Yat-Sen University, Guangzhou 510275, ChinaSchool of Mathematics, Sun Yat-Sen University, Guangzhou 510275, ChinaSchool of Mathematics, Sun Yat-Sen University, Guangzhou 510275, ChinaIn this research paper, we deal with the problem of determining the function <inline-formula><math display="inline"><semantics><mrow><mi>χ</mi><mo>:</mo><mi>G</mi><mspace width="3.33333pt"></mspace><mo>→</mo><mi mathvariant="double-struck">R</mi></mrow></semantics></math></inline-formula>, which is the solution to the maximum functional equation (MFE) <inline-formula><math display="inline"><semantics><mrow><mo movablelimits="true" form="prefix">max</mo><mrow><mo>{</mo><mspace width="0.166667em"></mspace><mi>χ</mi><mrow><mo>(</mo><mi>x</mi><mi>y</mi><mo>)</mo></mrow><mo>,</mo><mi>χ</mi><mrow><mo>(</mo><mi>x</mi><msup><mi>y</mi><mrow><mo>−</mo><mn>1</mn></mrow></msup><mo>)</mo></mrow><mspace width="0.166667em"></mspace><mo>}</mo></mrow><mo>=</mo><mi>χ</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mi>χ</mi><mrow><mo>(</mo><mi>y</mi><mo>)</mo></mrow><mo>,</mo></mrow></semantics></math></inline-formula> when the domain is a discretely normed abelian group or any arbitrary group <i>G</i>. We also analyse the stability of the maximum functional equation <inline-formula><math display="inline"><semantics><mrow><mo movablelimits="true" form="prefix">max</mo><mrow><mo>{</mo><mspace width="0.166667em"></mspace><mi>χ</mi><mrow><mo>(</mo><mi>x</mi><mi>y</mi><mo>)</mo></mrow><mo>,</mo><mi>χ</mi><mrow><mo>(</mo><mi>x</mi><msup><mi>y</mi><mrow><mo>−</mo><mn>1</mn></mrow></msup><mo>)</mo></mrow><mspace width="0.166667em"></mspace><mo>}</mo></mrow><mo>=</mo><mi>χ</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>+</mo><mi>χ</mi><mrow><mo>(</mo><mi>y</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula> and its solutions for the function <inline-formula><math display="inline"><semantics><mrow><mi>χ</mi><mo>:</mo><mi>G</mi><mspace width="3.33333pt"></mspace><mo>→</mo><mi mathvariant="double-struck">R</mi></mrow></semantics></math></inline-formula>, where <i>G</i> be any group and also investigate the connection of the stability with commutators and free abelian group <i>K</i> that can be embedded into a group <i>G</i>.https://www.mdpi.com/2073-8994/12/12/1949maximum functional equationsdiscretely normed abelian groupstability of functional equation |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Muhammad Sarfraz Qi Liu Yongjin Li |
spellingShingle |
Muhammad Sarfraz Qi Liu Yongjin Li Stability of Maximum Functional Equation and Some Properties of Groups Symmetry maximum functional equations discretely normed abelian group stability of functional equation |
author_facet |
Muhammad Sarfraz Qi Liu Yongjin Li |
author_sort |
Muhammad Sarfraz |
title |
Stability of Maximum Functional Equation and Some Properties of Groups |
title_short |
Stability of Maximum Functional Equation and Some Properties of Groups |
title_full |
Stability of Maximum Functional Equation and Some Properties of Groups |
title_fullStr |
Stability of Maximum Functional Equation and Some Properties of Groups |
title_full_unstemmed |
Stability of Maximum Functional Equation and Some Properties of Groups |
title_sort |
stability of maximum functional equation and some properties of groups |
publisher |
MDPI AG |
series |
Symmetry |
issn |
2073-8994 |
publishDate |
2020-11-01 |
description |
In this research paper, we deal with the problem of determining the function <inline-formula><math display="inline"><semantics><mrow><mi>χ</mi><mo>:</mo><mi>G</mi><mspace width="3.33333pt"></mspace><mo>→</mo><mi mathvariant="double-struck">R</mi></mrow></semantics></math></inline-formula>, which is the solution to the maximum functional equation (MFE) <inline-formula><math display="inline"><semantics><mrow><mo movablelimits="true" form="prefix">max</mo><mrow><mo>{</mo><mspace width="0.166667em"></mspace><mi>χ</mi><mrow><mo>(</mo><mi>x</mi><mi>y</mi><mo>)</mo></mrow><mo>,</mo><mi>χ</mi><mrow><mo>(</mo><mi>x</mi><msup><mi>y</mi><mrow><mo>−</mo><mn>1</mn></mrow></msup><mo>)</mo></mrow><mspace width="0.166667em"></mspace><mo>}</mo></mrow><mo>=</mo><mi>χ</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mi>χ</mi><mrow><mo>(</mo><mi>y</mi><mo>)</mo></mrow><mo>,</mo></mrow></semantics></math></inline-formula> when the domain is a discretely normed abelian group or any arbitrary group <i>G</i>. We also analyse the stability of the maximum functional equation <inline-formula><math display="inline"><semantics><mrow><mo movablelimits="true" form="prefix">max</mo><mrow><mo>{</mo><mspace width="0.166667em"></mspace><mi>χ</mi><mrow><mo>(</mo><mi>x</mi><mi>y</mi><mo>)</mo></mrow><mo>,</mo><mi>χ</mi><mrow><mo>(</mo><mi>x</mi><msup><mi>y</mi><mrow><mo>−</mo><mn>1</mn></mrow></msup><mo>)</mo></mrow><mspace width="0.166667em"></mspace><mo>}</mo></mrow><mo>=</mo><mi>χ</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>+</mo><mi>χ</mi><mrow><mo>(</mo><mi>y</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula> and its solutions for the function <inline-formula><math display="inline"><semantics><mrow><mi>χ</mi><mo>:</mo><mi>G</mi><mspace width="3.33333pt"></mspace><mo>→</mo><mi mathvariant="double-struck">R</mi></mrow></semantics></math></inline-formula>, where <i>G</i> be any group and also investigate the connection of the stability with commutators and free abelian group <i>K</i> that can be embedded into a group <i>G</i>. |
topic |
maximum functional equations discretely normed abelian group stability of functional equation |
url |
https://www.mdpi.com/2073-8994/12/12/1949 |
work_keys_str_mv |
AT muhammadsarfraz stabilityofmaximumfunctionalequationandsomepropertiesofgroups AT qiliu stabilityofmaximumfunctionalequationandsomepropertiesofgroups AT yongjinli stabilityofmaximumfunctionalequationandsomepropertiesofgroups |
_version_ |
1724413712101539840 |