Stability of Maximum Functional Equation and Some Properties of Groups

In this research paper, we deal with the problem of determining the function <inline-formula><math display="inline"><semantics><mrow><mi>χ</mi><mo>:</mo><mi>G</mi><mspace width="3.33333pt"></mspace><mo>...

Full description

Bibliographic Details
Main Authors: Muhammad Sarfraz, Qi Liu, Yongjin Li
Format: Article
Language:English
Published: MDPI AG 2020-11-01
Series:Symmetry
Subjects:
Online Access:https://www.mdpi.com/2073-8994/12/12/1949
id doaj-7b85df7a2560477f8da0f554ea8f4908
record_format Article
spelling doaj-7b85df7a2560477f8da0f554ea8f49082020-11-27T08:07:50ZengMDPI AGSymmetry2073-89942020-11-01121949194910.3390/sym12121949Stability of Maximum Functional Equation and Some Properties of GroupsMuhammad Sarfraz0Qi Liu1Yongjin Li2School of Mathematics, Sun Yat-Sen University, Guangzhou 510275, ChinaSchool of Mathematics, Sun Yat-Sen University, Guangzhou 510275, ChinaSchool of Mathematics, Sun Yat-Sen University, Guangzhou 510275, ChinaIn this research paper, we deal with the problem of determining the function <inline-formula><math display="inline"><semantics><mrow><mi>χ</mi><mo>:</mo><mi>G</mi><mspace width="3.33333pt"></mspace><mo>→</mo><mi mathvariant="double-struck">R</mi></mrow></semantics></math></inline-formula>, which is the solution to the maximum functional equation (MFE) <inline-formula><math display="inline"><semantics><mrow><mo movablelimits="true" form="prefix">max</mo><mrow><mo>{</mo><mspace width="0.166667em"></mspace><mi>χ</mi><mrow><mo>(</mo><mi>x</mi><mi>y</mi><mo>)</mo></mrow><mo>,</mo><mi>χ</mi><mrow><mo>(</mo><mi>x</mi><msup><mi>y</mi><mrow><mo>−</mo><mn>1</mn></mrow></msup><mo>)</mo></mrow><mspace width="0.166667em"></mspace><mo>}</mo></mrow><mo>=</mo><mi>χ</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mi>χ</mi><mrow><mo>(</mo><mi>y</mi><mo>)</mo></mrow><mo>,</mo></mrow></semantics></math></inline-formula> when the domain is a discretely normed abelian group or any arbitrary group <i>G</i>. We also analyse the stability of the maximum functional equation <inline-formula><math display="inline"><semantics><mrow><mo movablelimits="true" form="prefix">max</mo><mrow><mo>{</mo><mspace width="0.166667em"></mspace><mi>χ</mi><mrow><mo>(</mo><mi>x</mi><mi>y</mi><mo>)</mo></mrow><mo>,</mo><mi>χ</mi><mrow><mo>(</mo><mi>x</mi><msup><mi>y</mi><mrow><mo>−</mo><mn>1</mn></mrow></msup><mo>)</mo></mrow><mspace width="0.166667em"></mspace><mo>}</mo></mrow><mo>=</mo><mi>χ</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>+</mo><mi>χ</mi><mrow><mo>(</mo><mi>y</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula> and its solutions for the function <inline-formula><math display="inline"><semantics><mrow><mi>χ</mi><mo>:</mo><mi>G</mi><mspace width="3.33333pt"></mspace><mo>→</mo><mi mathvariant="double-struck">R</mi></mrow></semantics></math></inline-formula>, where <i>G</i> be any group and also investigate the connection of the stability with commutators and free abelian group <i>K</i> that can be embedded into a group <i>G</i>.https://www.mdpi.com/2073-8994/12/12/1949maximum functional equationsdiscretely normed abelian groupstability of functional equation
collection DOAJ
language English
format Article
sources DOAJ
author Muhammad Sarfraz
Qi Liu
Yongjin Li
spellingShingle Muhammad Sarfraz
Qi Liu
Yongjin Li
Stability of Maximum Functional Equation and Some Properties of Groups
Symmetry
maximum functional equations
discretely normed abelian group
stability of functional equation
author_facet Muhammad Sarfraz
Qi Liu
Yongjin Li
author_sort Muhammad Sarfraz
title Stability of Maximum Functional Equation and Some Properties of Groups
title_short Stability of Maximum Functional Equation and Some Properties of Groups
title_full Stability of Maximum Functional Equation and Some Properties of Groups
title_fullStr Stability of Maximum Functional Equation and Some Properties of Groups
title_full_unstemmed Stability of Maximum Functional Equation and Some Properties of Groups
title_sort stability of maximum functional equation and some properties of groups
publisher MDPI AG
series Symmetry
issn 2073-8994
publishDate 2020-11-01
description In this research paper, we deal with the problem of determining the function <inline-formula><math display="inline"><semantics><mrow><mi>χ</mi><mo>:</mo><mi>G</mi><mspace width="3.33333pt"></mspace><mo>→</mo><mi mathvariant="double-struck">R</mi></mrow></semantics></math></inline-formula>, which is the solution to the maximum functional equation (MFE) <inline-formula><math display="inline"><semantics><mrow><mo movablelimits="true" form="prefix">max</mo><mrow><mo>{</mo><mspace width="0.166667em"></mspace><mi>χ</mi><mrow><mo>(</mo><mi>x</mi><mi>y</mi><mo>)</mo></mrow><mo>,</mo><mi>χ</mi><mrow><mo>(</mo><mi>x</mi><msup><mi>y</mi><mrow><mo>−</mo><mn>1</mn></mrow></msup><mo>)</mo></mrow><mspace width="0.166667em"></mspace><mo>}</mo></mrow><mo>=</mo><mi>χ</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mi>χ</mi><mrow><mo>(</mo><mi>y</mi><mo>)</mo></mrow><mo>,</mo></mrow></semantics></math></inline-formula> when the domain is a discretely normed abelian group or any arbitrary group <i>G</i>. We also analyse the stability of the maximum functional equation <inline-formula><math display="inline"><semantics><mrow><mo movablelimits="true" form="prefix">max</mo><mrow><mo>{</mo><mspace width="0.166667em"></mspace><mi>χ</mi><mrow><mo>(</mo><mi>x</mi><mi>y</mi><mo>)</mo></mrow><mo>,</mo><mi>χ</mi><mrow><mo>(</mo><mi>x</mi><msup><mi>y</mi><mrow><mo>−</mo><mn>1</mn></mrow></msup><mo>)</mo></mrow><mspace width="0.166667em"></mspace><mo>}</mo></mrow><mo>=</mo><mi>χ</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>+</mo><mi>χ</mi><mrow><mo>(</mo><mi>y</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula> and its solutions for the function <inline-formula><math display="inline"><semantics><mrow><mi>χ</mi><mo>:</mo><mi>G</mi><mspace width="3.33333pt"></mspace><mo>→</mo><mi mathvariant="double-struck">R</mi></mrow></semantics></math></inline-formula>, where <i>G</i> be any group and also investigate the connection of the stability with commutators and free abelian group <i>K</i> that can be embedded into a group <i>G</i>.
topic maximum functional equations
discretely normed abelian group
stability of functional equation
url https://www.mdpi.com/2073-8994/12/12/1949
work_keys_str_mv AT muhammadsarfraz stabilityofmaximumfunctionalequationandsomepropertiesofgroups
AT qiliu stabilityofmaximumfunctionalequationandsomepropertiesofgroups
AT yongjinli stabilityofmaximumfunctionalequationandsomepropertiesofgroups
_version_ 1724413712101539840