Exploring supervised machine learning approaches to predicting Veterans Health Administration chiropractic service utilization
Abstract Background Chronic spinal pain conditions affect millions of US adults and carry a high healthcare cost burden, both direct and indirect. Conservative interventions for spinal pain conditions, including chiropractic care, have been associated with lower healthcare costs and improvements in...
Main Authors: | , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
BMC
2020-07-01
|
Series: | Chiropractic & Manual Therapies |
Subjects: | |
Online Access: | http://link.springer.com/article/10.1186/s12998-020-00335-4 |
id |
doaj-7b7566cc62f94863b36878804a99835f |
---|---|
record_format |
Article |
spelling |
doaj-7b7566cc62f94863b36878804a99835f2020-11-25T02:40:27ZengBMCChiropractic & Manual Therapies2045-709X2020-07-0128111310.1186/s12998-020-00335-4Exploring supervised machine learning approaches to predicting Veterans Health Administration chiropractic service utilizationBrian C. Coleman0Samah Fodeh1Anthony J. Lisi2Joseph L. Goulet3Kelsey L. Corcoran4Harini Bathulapalli5Cynthia A. Brandt6Pain Research, Informatics, Multimorbidities, and Education (PRIME) Center, VA Connecticut Healthcare SystemPain Research, Informatics, Multimorbidities, and Education (PRIME) Center, VA Connecticut Healthcare SystemPain Research, Informatics, Multimorbidities, and Education (PRIME) Center, VA Connecticut Healthcare SystemPain Research, Informatics, Multimorbidities, and Education (PRIME) Center, VA Connecticut Healthcare SystemPain Research, Informatics, Multimorbidities, and Education (PRIME) Center, VA Connecticut Healthcare SystemPain Research, Informatics, Multimorbidities, and Education (PRIME) Center, VA Connecticut Healthcare SystemPain Research, Informatics, Multimorbidities, and Education (PRIME) Center, VA Connecticut Healthcare SystemAbstract Background Chronic spinal pain conditions affect millions of US adults and carry a high healthcare cost burden, both direct and indirect. Conservative interventions for spinal pain conditions, including chiropractic care, have been associated with lower healthcare costs and improvements in pain status in different clinical populations, including veterans. Little is currently known about predicting healthcare service utilization in the domain of conservative interventions for spinal pain conditions, including the frequency of use of chiropractic services. The purpose of this retrospective cohort study was to explore the use of supervised machine learning approaches to predicting one-year chiropractic service utilization by veterans receiving VA chiropractic care. Methods We included 19,946 veterans who entered the Musculoskeletal Diagnosis Cohort between October 1, 2003 and September 30, 2013 and utilized VA chiropractic services within one year of cohort entry. The primary outcome was one-year chiropractic service utilization following index chiropractic visit, split into quartiles represented by the following classes: 1 visit, 2 to 3 visits, 4 to 6 visits, and 7 or greater visits. We compared the performance of four multiclass classification algorithms (gradient boosted classifier, stochastic gradient descent classifier, support vector classifier, and artificial neural network) in predicting visit quartile using 158 sociodemographic and clinical features. Results The selected algorithms demonstrated poor prediction capabilities. Subset accuracy was 42.1% for the gradient boosted classifier, 38.6% for the stochastic gradient descent classifier, 41.4% for the support vector classifier, and 40.3% for the artificial neural network. The micro-averaged area under the precision-recall curve for each one-versus-rest classifier was 0.43 for the gradient boosted classifier, 0.38 for the stochastic gradient descent classifier, 0.43 for the support vector classifier, and 0.42 for the artificial neural network. Performance of each model yielded only a small positive shift in prediction probability (approximately 15%) compared to naïve classification. Conclusions Using supervised machine learning to predict chiropractic service utilization remains challenging, with only a small shift in predictive probability over naïve classification and limited clinical utility. Future work should examine mechanisms to improve model performance.http://link.springer.com/article/10.1186/s12998-020-00335-4Machine learningPredictive ModelingChiropracticHealthcare service utilization |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Brian C. Coleman Samah Fodeh Anthony J. Lisi Joseph L. Goulet Kelsey L. Corcoran Harini Bathulapalli Cynthia A. Brandt |
spellingShingle |
Brian C. Coleman Samah Fodeh Anthony J. Lisi Joseph L. Goulet Kelsey L. Corcoran Harini Bathulapalli Cynthia A. Brandt Exploring supervised machine learning approaches to predicting Veterans Health Administration chiropractic service utilization Chiropractic & Manual Therapies Machine learning Predictive Modeling Chiropractic Healthcare service utilization |
author_facet |
Brian C. Coleman Samah Fodeh Anthony J. Lisi Joseph L. Goulet Kelsey L. Corcoran Harini Bathulapalli Cynthia A. Brandt |
author_sort |
Brian C. Coleman |
title |
Exploring supervised machine learning approaches to predicting Veterans Health Administration chiropractic service utilization |
title_short |
Exploring supervised machine learning approaches to predicting Veterans Health Administration chiropractic service utilization |
title_full |
Exploring supervised machine learning approaches to predicting Veterans Health Administration chiropractic service utilization |
title_fullStr |
Exploring supervised machine learning approaches to predicting Veterans Health Administration chiropractic service utilization |
title_full_unstemmed |
Exploring supervised machine learning approaches to predicting Veterans Health Administration chiropractic service utilization |
title_sort |
exploring supervised machine learning approaches to predicting veterans health administration chiropractic service utilization |
publisher |
BMC |
series |
Chiropractic & Manual Therapies |
issn |
2045-709X |
publishDate |
2020-07-01 |
description |
Abstract Background Chronic spinal pain conditions affect millions of US adults and carry a high healthcare cost burden, both direct and indirect. Conservative interventions for spinal pain conditions, including chiropractic care, have been associated with lower healthcare costs and improvements in pain status in different clinical populations, including veterans. Little is currently known about predicting healthcare service utilization in the domain of conservative interventions for spinal pain conditions, including the frequency of use of chiropractic services. The purpose of this retrospective cohort study was to explore the use of supervised machine learning approaches to predicting one-year chiropractic service utilization by veterans receiving VA chiropractic care. Methods We included 19,946 veterans who entered the Musculoskeletal Diagnosis Cohort between October 1, 2003 and September 30, 2013 and utilized VA chiropractic services within one year of cohort entry. The primary outcome was one-year chiropractic service utilization following index chiropractic visit, split into quartiles represented by the following classes: 1 visit, 2 to 3 visits, 4 to 6 visits, and 7 or greater visits. We compared the performance of four multiclass classification algorithms (gradient boosted classifier, stochastic gradient descent classifier, support vector classifier, and artificial neural network) in predicting visit quartile using 158 sociodemographic and clinical features. Results The selected algorithms demonstrated poor prediction capabilities. Subset accuracy was 42.1% for the gradient boosted classifier, 38.6% for the stochastic gradient descent classifier, 41.4% for the support vector classifier, and 40.3% for the artificial neural network. The micro-averaged area under the precision-recall curve for each one-versus-rest classifier was 0.43 for the gradient boosted classifier, 0.38 for the stochastic gradient descent classifier, 0.43 for the support vector classifier, and 0.42 for the artificial neural network. Performance of each model yielded only a small positive shift in prediction probability (approximately 15%) compared to naïve classification. Conclusions Using supervised machine learning to predict chiropractic service utilization remains challenging, with only a small shift in predictive probability over naïve classification and limited clinical utility. Future work should examine mechanisms to improve model performance. |
topic |
Machine learning Predictive Modeling Chiropractic Healthcare service utilization |
url |
http://link.springer.com/article/10.1186/s12998-020-00335-4 |
work_keys_str_mv |
AT brianccoleman exploringsupervisedmachinelearningapproachestopredictingveteranshealthadministrationchiropracticserviceutilization AT samahfodeh exploringsupervisedmachinelearningapproachestopredictingveteranshealthadministrationchiropracticserviceutilization AT anthonyjlisi exploringsupervisedmachinelearningapproachestopredictingveteranshealthadministrationchiropracticserviceutilization AT josephlgoulet exploringsupervisedmachinelearningapproachestopredictingveteranshealthadministrationchiropracticserviceutilization AT kelseylcorcoran exploringsupervisedmachinelearningapproachestopredictingveteranshealthadministrationchiropracticserviceutilization AT harinibathulapalli exploringsupervisedmachinelearningapproachestopredictingveteranshealthadministrationchiropracticserviceutilization AT cynthiaabrandt exploringsupervisedmachinelearningapproachestopredictingveteranshealthadministrationchiropracticserviceutilization |
_version_ |
1724781563102625792 |