The method for diagnostics of the phase synchronization of the vegetative control of blood circulation in real time

Background and Objectives: The development of methods for the analysis of non-stationary signals of biological nature makes it possible to solve a number of fundamental and applied problems. The use of these methods is promising for the diagnosis and prevention of diseases of the cardiovascular syst...

Full description

Bibliographic Details
Main Authors: Kurbako, Aleksandr Vasilievich, Borovkova, Ekaterina Igorevna, Kiselev, Anton Robertovich, Skazkina, Victoria Viktorovna, Ponomarenko, Vladimir Ivanovich, Bezruchko, Boris Petrovich, Karavaev, Anatoly Sergeevich
Format: Article
Language:English
Published: Saratov State University 2021-08-01
Series:Известия Саратовского университета. Новая серия Серия: Физика
Subjects:
Online Access:https://fizika.sgu.ru/sites/fizika.sgu.ru/files/text-pdf/2021/08/213-221_kurbako_i_dr.pdf
Description
Summary:Background and Objectives: The development of methods for the analysis of non-stationary signals of biological nature makes it possible to solve a number of fundamental and applied problems. The use of these methods is promising for the diagnosis and prevention of diseases of the cardiovascular system. The creation of the device makes it possible to detect diseases at an early stage. However, this requires the development of methods for analyzing non-stationary signals of biological nature in real time. Therefore, the purpose of the study is the method for diagnosing the phase chain of autonomic control of blood circulation in real time. Materials and Methods: Test realizations of instantaneous phase differences were created, repeating the statistical properties of real data recorded from people. A comparison of the sensitivity of the developed and known methods for different values of the input parameters was carried out. The complexity of the two methods was estimated. Results: A method was developed for diagnosing the phase chains of autonomic control of blood circulation in real time. The methods showed similar sensitivity values. The developed method has less complexity in comparison with the known method. Conclusion: The developed method can be used to diagnose the phase synchronization of the autonomic regulation circuits of the heart and blood vessels in real time.
ISSN:1817-3020
2542-193X