Top-down constraints on global N<sub>2</sub>O emissions at optimal resolution: application of a new dimension reduction technique

We present top-down constraints on global monthly N<sub>2</sub>O emissions for 2011 from a multi-inversion approach and an ensemble of surface observations. The inversions employ the GEOS-Chem adjoint and an array of aggregation strategies to test how well current observations can con...

Full description

Bibliographic Details
Main Authors: K. C. Wells, D. B. Millet, N. Bousserez, D. K. Henze, T. J. Griffis, S. Chaliyakunnel, E. J. Dlugokencky, E. Saikawa, G. Xiang, R. G. Prinn, S. O'Doherty, D. Young, R. F. Weiss, G. S. Dutton, J. W. Elkins, P. B. Krummel, R. Langenfelds, L. P. Steele
Format: Article
Language:English
Published: Copernicus Publications 2018-01-01
Series:Atmospheric Chemistry and Physics
Online Access:https://www.atmos-chem-phys.net/18/735/2018/acp-18-735-2018.pdf
id doaj-7b6df3c886924a1fa82ae76d06187e99
record_format Article
collection DOAJ
language English
format Article
sources DOAJ
author K. C. Wells
D. B. Millet
N. Bousserez
D. K. Henze
T. J. Griffis
S. Chaliyakunnel
E. J. Dlugokencky
E. Saikawa
G. Xiang
R. G. Prinn
S. O'Doherty
D. Young
R. F. Weiss
G. S. Dutton
G. S. Dutton
J. W. Elkins
P. B. Krummel
R. Langenfelds
L. P. Steele
spellingShingle K. C. Wells
D. B. Millet
N. Bousserez
D. K. Henze
T. J. Griffis
S. Chaliyakunnel
E. J. Dlugokencky
E. Saikawa
G. Xiang
R. G. Prinn
S. O'Doherty
D. Young
R. F. Weiss
G. S. Dutton
G. S. Dutton
J. W. Elkins
P. B. Krummel
R. Langenfelds
L. P. Steele
Top-down constraints on global N<sub>2</sub>O emissions at optimal resolution: application of a new dimension reduction technique
Atmospheric Chemistry and Physics
author_facet K. C. Wells
D. B. Millet
N. Bousserez
D. K. Henze
T. J. Griffis
S. Chaliyakunnel
E. J. Dlugokencky
E. Saikawa
G. Xiang
R. G. Prinn
S. O'Doherty
D. Young
R. F. Weiss
G. S. Dutton
G. S. Dutton
J. W. Elkins
P. B. Krummel
R. Langenfelds
L. P. Steele
author_sort K. C. Wells
title Top-down constraints on global N<sub>2</sub>O emissions at optimal resolution: application of a new dimension reduction technique
title_short Top-down constraints on global N<sub>2</sub>O emissions at optimal resolution: application of a new dimension reduction technique
title_full Top-down constraints on global N<sub>2</sub>O emissions at optimal resolution: application of a new dimension reduction technique
title_fullStr Top-down constraints on global N<sub>2</sub>O emissions at optimal resolution: application of a new dimension reduction technique
title_full_unstemmed Top-down constraints on global N<sub>2</sub>O emissions at optimal resolution: application of a new dimension reduction technique
title_sort top-down constraints on global n<sub>2</sub>o emissions at optimal resolution: application of a new dimension reduction technique
publisher Copernicus Publications
series Atmospheric Chemistry and Physics
issn 1680-7316
1680-7324
publishDate 2018-01-01
description We present top-down constraints on global monthly N<sub>2</sub>O emissions for 2011 from a multi-inversion approach and an ensemble of surface observations. The inversions employ the GEOS-Chem adjoint and an array of aggregation strategies to test how well current observations can constrain the spatial distribution of global N<sub>2</sub>O emissions. The strategies include (1) a standard 4D-Var inversion at native model resolution (4° × 5°), (2) an inversion for six continental and three ocean regions, and (3) a fast 4D-Var inversion based on a novel dimension reduction technique employing randomized singular value decomposition (SVD). The optimized global flux ranges from 15.9 Tg N yr<sup>−1</sup> (SVD-based inversion) to 17.5–17.7 Tg N yr<sup>−1</sup> (continental-scale, standard 4D-Var inversions), with the former better capturing the extratropical N<sub>2</sub>O background measured during the HIAPER Pole-to-Pole Observations (HIPPO) airborne campaigns. We find that the tropics provide a greater contribution to the global N<sub>2</sub>O flux than is predicted by the prior bottom-up inventories, likely due to underestimated agricultural and oceanic emissions. We infer an overestimate of natural soil emissions in the extratropics and find that predicted emissions are seasonally biased in northern midlatitudes. Here, optimized fluxes exhibit a springtime peak consistent with the timing of spring fertilizer and manure application, soil thawing, and elevated soil moisture. Finally, the inversions reveal a major emission underestimate in the US Corn Belt in the bottom-up inventory used here. We extensively test the impact of initial conditions on the analysis and recommend formally optimizing the initial N<sub>2</sub>O distribution to avoid biasing the inferred fluxes. We find that the SVD-based approach provides a powerful framework for deriving emission information from N<sub>2</sub>O observations: by defining the optimal resolution of the solution based on the information content of the inversion, it provides spatial information that is lost when aggregating to political or geographic regions, while also providing more temporal information than a standard 4D-Var inversion.
url https://www.atmos-chem-phys.net/18/735/2018/acp-18-735-2018.pdf
work_keys_str_mv AT kcwells topdownconstraintsonglobalnsub2suboemissionsatoptimalresolutionapplicationofanewdimensionreductiontechnique
AT dbmillet topdownconstraintsonglobalnsub2suboemissionsatoptimalresolutionapplicationofanewdimensionreductiontechnique
AT nbousserez topdownconstraintsonglobalnsub2suboemissionsatoptimalresolutionapplicationofanewdimensionreductiontechnique
AT dkhenze topdownconstraintsonglobalnsub2suboemissionsatoptimalresolutionapplicationofanewdimensionreductiontechnique
AT tjgriffis topdownconstraintsonglobalnsub2suboemissionsatoptimalresolutionapplicationofanewdimensionreductiontechnique
AT schaliyakunnel topdownconstraintsonglobalnsub2suboemissionsatoptimalresolutionapplicationofanewdimensionreductiontechnique
AT ejdlugokencky topdownconstraintsonglobalnsub2suboemissionsatoptimalresolutionapplicationofanewdimensionreductiontechnique
AT esaikawa topdownconstraintsonglobalnsub2suboemissionsatoptimalresolutionapplicationofanewdimensionreductiontechnique
AT gxiang topdownconstraintsonglobalnsub2suboemissionsatoptimalresolutionapplicationofanewdimensionreductiontechnique
AT rgprinn topdownconstraintsonglobalnsub2suboemissionsatoptimalresolutionapplicationofanewdimensionreductiontechnique
AT sodoherty topdownconstraintsonglobalnsub2suboemissionsatoptimalresolutionapplicationofanewdimensionreductiontechnique
AT dyoung topdownconstraintsonglobalnsub2suboemissionsatoptimalresolutionapplicationofanewdimensionreductiontechnique
AT rfweiss topdownconstraintsonglobalnsub2suboemissionsatoptimalresolutionapplicationofanewdimensionreductiontechnique
AT gsdutton topdownconstraintsonglobalnsub2suboemissionsatoptimalresolutionapplicationofanewdimensionreductiontechnique
AT gsdutton topdownconstraintsonglobalnsub2suboemissionsatoptimalresolutionapplicationofanewdimensionreductiontechnique
AT jwelkins topdownconstraintsonglobalnsub2suboemissionsatoptimalresolutionapplicationofanewdimensionreductiontechnique
AT pbkrummel topdownconstraintsonglobalnsub2suboemissionsatoptimalresolutionapplicationofanewdimensionreductiontechnique
AT rlangenfelds topdownconstraintsonglobalnsub2suboemissionsatoptimalresolutionapplicationofanewdimensionreductiontechnique
AT lpsteele topdownconstraintsonglobalnsub2suboemissionsatoptimalresolutionapplicationofanewdimensionreductiontechnique
_version_ 1716771704234049536
spelling doaj-7b6df3c886924a1fa82ae76d06187e992020-11-24T21:04:10ZengCopernicus PublicationsAtmospheric Chemistry and Physics1680-73161680-73242018-01-011873575610.5194/acp-18-735-2018Top-down constraints on global N<sub>2</sub>O emissions at optimal resolution: application of a new dimension reduction techniqueK. C. Wells0D. B. Millet1N. Bousserez2D. K. Henze3T. J. Griffis4S. Chaliyakunnel5E. J. Dlugokencky6E. Saikawa7G. Xiang8R. G. Prinn9S. O'Doherty10D. Young11R. F. Weiss12G. S. Dutton13G. S. Dutton14J. W. Elkins15P. B. Krummel16R. Langenfelds17L. P. Steele18Department of Soil, Water, and Climate, University of Minnesota, St. Paul, MN, USADepartment of Soil, Water, and Climate, University of Minnesota, St. Paul, MN, USADepartment of Mechanical Engineering, University of Colorado at Boulder, Boulder, CO, USADepartment of Mechanical Engineering, University of Colorado at Boulder, Boulder, CO, USADepartment of Soil, Water, and Climate, University of Minnesota, St. Paul, MN, USADepartment of Soil, Water, and Climate, University of Minnesota, St. Paul, MN, USAEarth System Research Laboratory, NOAA, Boulder, CO, USADepartment of Environmental Sciences, Emory University, Atlanta, GA, USAJoint Program on the Science and Policy of Global Change, Massachusetts Institute of Technology, Cambridge, MA, USACenter for Global Change Science, Massachusetts Institute of Technology, Cambridge, MA, USASchool of Chemistry, University of Bristol, Bristol, UKSchool of Chemistry, University of Bristol, Bristol, UKScripps Institute of Oceanography, University of California San Diego, La Jolla, CA, USAEarth System Research Laboratory, NOAA, Boulder, CO, USACIRES, University of Colorado at Boulder, Boulder, CO, USAEarth System Research Laboratory, NOAA, Boulder, CO, USAClimate Science Centre, CSIRO Oceans and Atmosphere, Aspendale, Victoria, AustraliaClimate Science Centre, CSIRO Oceans and Atmosphere, Aspendale, Victoria, AustraliaClimate Science Centre, CSIRO Oceans and Atmosphere, Aspendale, Victoria, AustraliaWe present top-down constraints on global monthly N<sub>2</sub>O emissions for 2011 from a multi-inversion approach and an ensemble of surface observations. The inversions employ the GEOS-Chem adjoint and an array of aggregation strategies to test how well current observations can constrain the spatial distribution of global N<sub>2</sub>O emissions. The strategies include (1) a standard 4D-Var inversion at native model resolution (4° × 5°), (2) an inversion for six continental and three ocean regions, and (3) a fast 4D-Var inversion based on a novel dimension reduction technique employing randomized singular value decomposition (SVD). The optimized global flux ranges from 15.9 Tg N yr<sup>−1</sup> (SVD-based inversion) to 17.5–17.7 Tg N yr<sup>−1</sup> (continental-scale, standard 4D-Var inversions), with the former better capturing the extratropical N<sub>2</sub>O background measured during the HIAPER Pole-to-Pole Observations (HIPPO) airborne campaigns. We find that the tropics provide a greater contribution to the global N<sub>2</sub>O flux than is predicted by the prior bottom-up inventories, likely due to underestimated agricultural and oceanic emissions. We infer an overestimate of natural soil emissions in the extratropics and find that predicted emissions are seasonally biased in northern midlatitudes. Here, optimized fluxes exhibit a springtime peak consistent with the timing of spring fertilizer and manure application, soil thawing, and elevated soil moisture. Finally, the inversions reveal a major emission underestimate in the US Corn Belt in the bottom-up inventory used here. We extensively test the impact of initial conditions on the analysis and recommend formally optimizing the initial N<sub>2</sub>O distribution to avoid biasing the inferred fluxes. We find that the SVD-based approach provides a powerful framework for deriving emission information from N<sub>2</sub>O observations: by defining the optimal resolution of the solution based on the information content of the inversion, it provides spatial information that is lost when aggregating to political or geographic regions, while also providing more temporal information than a standard 4D-Var inversion.https://www.atmos-chem-phys.net/18/735/2018/acp-18-735-2018.pdf