On weak (σ, δ)-rigid rings over Noetherian rings
Let R be a Noetherian integral domain which is also an algebra over ℚ (ℚ is the field of rational numbers). Let σ be an endo-morphism of R and δ a σ-derivation of R. We recall that a ring R is a weak (σ, δ)-rigid ring if a(σ(a)+ δ(a)) ∈ N(R) if and only if a ∈ N(R) for a ∈ R (N(R) is the set of nilp...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Sciendo
2020-07-01
|
Series: | Acta Universitatis Sapientiae: Mathematica |
Subjects: | |
Online Access: | https://doi.org/10.2478/ausm-2020-0001 |
Summary: | Let R be a Noetherian integral domain which is also an algebra over ℚ (ℚ is the field of rational numbers). Let σ be an endo-morphism of R and δ a σ-derivation of R. We recall that a ring R is a weak (σ, δ)-rigid ring if a(σ(a)+ δ(a)) ∈ N(R) if and only if a ∈ N(R) for a ∈ R (N(R) is the set of nilpotent elements of R). With this we prove that if R is a Noetherian integral domain which is also an algebra over ℚ, σ an automorphism of R and δ a σ-derivation of R such that R is a weak (σ, δ)-rigid ring, then N(R) is completely semiprime. |
---|---|
ISSN: | 2066-7752 |