Past dynamics of the Australian monsoon: precession, phase and links to the global monsoon concept
Past variations in the dynamics of the Australian monsoon have been estimated from multi-proxy analysis of a core retrieved in the Eastern Banda Sea. Records of coccolith and pollen assemblages, spanning the last 150 000 years, allow reconstruction of past primary production in the Banda Sea, summer...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Copernicus Publications
2010-10-01
|
Series: | Climate of the Past |
Online Access: | http://www.clim-past.net/6/695/2010/cp-6-695-2010.pdf |
id |
doaj-7b2de16bed024be198a8149fdc8cd5dc |
---|---|
record_format |
Article |
spelling |
doaj-7b2de16bed024be198a8149fdc8cd5dc2020-11-24T23:36:43ZengCopernicus PublicationsClimate of the Past1814-93241814-93322010-10-016569570610.5194/cp-6-695-2010Past dynamics of the Australian monsoon: precession, phase and links to the global monsoon conceptL. BeaufortS. van der KaarsF. C. BassinotV. MoronPast variations in the dynamics of the Australian monsoon have been estimated from multi-proxy analysis of a core retrieved in the Eastern Banda Sea. Records of coccolith and pollen assemblages, spanning the last 150 000 years, allow reconstruction of past primary production in the Banda Sea, summer moisture availability, and the length of the dry season in northern Australia and southeastern Indonesia. The amount of moisture available during the summer monsoon follows typical glacial/interglacial dynamics with a broad asymmetrical 100-kyr cycle. Primary production and length of the dry season appear to be closely related, given that they follow the precessional cycle with the same phase. This indicates their independence from ice-volume variations. The present inter-annual variability of both parameters is related to El Niño Southern Oscillation (ENSO), which modulates the Australian Winter Monsoon (AWM). The precessional pattern observed in the past dynamics of the AWM is found in ENSO and monsoon records of other regions. A marked shift in the monsoon intensity occurring during the mid Holocene during a period of constant ice volume, suggests that low latitude climatic variation precedes increases in global ice volume. This precessional pattern suggests that a common forcing mechanism underlies low latitude climate dynamics, acting specifically and synchronously on the different monsoon systems. http://www.clim-past.net/6/695/2010/cp-6-695-2010.pdf |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
L. Beaufort S. van der Kaars F. C. Bassinot V. Moron |
spellingShingle |
L. Beaufort S. van der Kaars F. C. Bassinot V. Moron Past dynamics of the Australian monsoon: precession, phase and links to the global monsoon concept Climate of the Past |
author_facet |
L. Beaufort S. van der Kaars F. C. Bassinot V. Moron |
author_sort |
L. Beaufort |
title |
Past dynamics of the Australian monsoon: precession, phase and links to the global monsoon concept |
title_short |
Past dynamics of the Australian monsoon: precession, phase and links to the global monsoon concept |
title_full |
Past dynamics of the Australian monsoon: precession, phase and links to the global monsoon concept |
title_fullStr |
Past dynamics of the Australian monsoon: precession, phase and links to the global monsoon concept |
title_full_unstemmed |
Past dynamics of the Australian monsoon: precession, phase and links to the global monsoon concept |
title_sort |
past dynamics of the australian monsoon: precession, phase and links to the global monsoon concept |
publisher |
Copernicus Publications |
series |
Climate of the Past |
issn |
1814-9324 1814-9332 |
publishDate |
2010-10-01 |
description |
Past variations in the dynamics of the Australian monsoon have been estimated from multi-proxy analysis of a core retrieved in the Eastern Banda Sea. Records of coccolith and pollen assemblages, spanning the last 150 000 years, allow reconstruction of past primary production in the Banda Sea, summer moisture availability, and the length of the dry season in northern Australia and southeastern Indonesia. The amount of moisture available during the summer monsoon follows typical glacial/interglacial dynamics with a broad asymmetrical 100-kyr cycle. Primary production and length of the dry season appear to be closely related, given that they follow the precessional cycle with the same phase. This indicates their independence from ice-volume variations. The present inter-annual variability of both parameters is related to El Niño Southern Oscillation (ENSO), which modulates the Australian Winter Monsoon (AWM). The precessional pattern observed in the past dynamics of the AWM is found in ENSO and monsoon records of other regions. A marked shift in the monsoon intensity occurring during the mid Holocene during a period of constant ice volume, suggests that low latitude climatic variation precedes increases in global ice volume. This precessional pattern suggests that a common forcing mechanism underlies low latitude climate dynamics, acting specifically and synchronously on the different monsoon systems. |
url |
http://www.clim-past.net/6/695/2010/cp-6-695-2010.pdf |
work_keys_str_mv |
AT lbeaufort pastdynamicsoftheaustralianmonsoonprecessionphaseandlinkstotheglobalmonsoonconcept AT svanderkaars pastdynamicsoftheaustralianmonsoonprecessionphaseandlinkstotheglobalmonsoonconcept AT fcbassinot pastdynamicsoftheaustralianmonsoonprecessionphaseandlinkstotheglobalmonsoonconcept AT vmoron pastdynamicsoftheaustralianmonsoonprecessionphaseandlinkstotheglobalmonsoonconcept |
_version_ |
1725521854322442240 |