On the global solvability of solutions to a quasilinear wave equation with localized damping and source terms

We prove existence and uniform stability of strong solutions to a quasilinear wave equation with a locally distributed nonlinear dissipation with source term of power nonlinearity of the type u″−M(∫Ω|∇u|2dx)Δu+a(x)g(u′)+f(u)=0, in Ω×]0,+∞[, u=0, on Γ×]0,+∞[,u(x,0)=u0(x),u′(x,0)=u1(x), in Ω....

Full description

Bibliographic Details
Main Authors: E. Cabanillas Lapa, Z. Huaringa Segura, F. Leon Barboza
Format: Article
Language:English
Published: Hindawi Limited 2005-01-01
Series:Journal of Applied Mathematics
Online Access:http://dx.doi.org/10.1155/JAM.2005.219
id doaj-7b1467d689894e38a1cfab2568ca7029
record_format Article
spelling doaj-7b1467d689894e38a1cfab2568ca70292020-11-24T23:21:01ZengHindawi LimitedJournal of Applied Mathematics1110-757X1687-00422005-01-012005321923310.1155/JAM.2005.219On the global solvability of solutions to a quasilinear wave equation with localized damping and source termsE. Cabanillas Lapa0Z. Huaringa Segura1F. Leon Barboza2Instituto de Investigación, Facultad de Ciencias Matemáticas, Universidad Nacional Mayor de San Marcos, Lima, PeruInstituto de Investigación, Facultad de Ciencias Matemáticas, Universidad Nacional Mayor de San Marcos, Lima, PeruInstituto de Investigación, Facultad de Ciencias Matemáticas, Universidad Nacional Mayor de San Marcos, Lima, PeruWe prove existence and uniform stability of strong solutions to a quasilinear wave equation with a locally distributed nonlinear dissipation with source term of power nonlinearity of the type u″−M(∫Ω|∇u|2dx)Δu+a(x)g(u′)+f(u)=0, in Ω×]0,+∞[, u=0, on Γ×]0,+∞[,u(x,0)=u0(x),u′(x,0)=u1(x), in Ω.http://dx.doi.org/10.1155/JAM.2005.219
collection DOAJ
language English
format Article
sources DOAJ
author E. Cabanillas Lapa
Z. Huaringa Segura
F. Leon Barboza
spellingShingle E. Cabanillas Lapa
Z. Huaringa Segura
F. Leon Barboza
On the global solvability of solutions to a quasilinear wave equation with localized damping and source terms
Journal of Applied Mathematics
author_facet E. Cabanillas Lapa
Z. Huaringa Segura
F. Leon Barboza
author_sort E. Cabanillas Lapa
title On the global solvability of solutions to a quasilinear wave equation with localized damping and source terms
title_short On the global solvability of solutions to a quasilinear wave equation with localized damping and source terms
title_full On the global solvability of solutions to a quasilinear wave equation with localized damping and source terms
title_fullStr On the global solvability of solutions to a quasilinear wave equation with localized damping and source terms
title_full_unstemmed On the global solvability of solutions to a quasilinear wave equation with localized damping and source terms
title_sort on the global solvability of solutions to a quasilinear wave equation with localized damping and source terms
publisher Hindawi Limited
series Journal of Applied Mathematics
issn 1110-757X
1687-0042
publishDate 2005-01-01
description We prove existence and uniform stability of strong solutions to a quasilinear wave equation with a locally distributed nonlinear dissipation with source term of power nonlinearity of the type u″−M(∫Ω|∇u|2dx)Δu+a(x)g(u′)+f(u)=0, in Ω×]0,+∞[, u=0, on Γ×]0,+∞[,u(x,0)=u0(x),u′(x,0)=u1(x), in Ω.
url http://dx.doi.org/10.1155/JAM.2005.219
work_keys_str_mv AT ecabanillaslapa ontheglobalsolvabilityofsolutionstoaquasilinearwaveequationwithlocalizeddampingandsourceterms
AT zhuaringasegura ontheglobalsolvabilityofsolutionstoaquasilinearwaveequationwithlocalizeddampingandsourceterms
AT fleonbarboza ontheglobalsolvabilityofsolutionstoaquasilinearwaveequationwithlocalizeddampingandsourceterms
_version_ 1725572996564779008