Leveraging artificial intelligence for pandemic preparedness and response: a scoping review to identify key use cases
Abstract Artificial intelligence (AI) represents a valuable tool that could be widely used to inform clinical and public health decision-making to effectively manage the impacts of a pandemic. The objective of this scoping review was to identify the key use cases for involving AI for pandemic prepar...
Main Authors: | , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Nature Publishing Group
2021-06-01
|
Series: | npj Digital Medicine |
Online Access: | https://doi.org/10.1038/s41746-021-00459-8 |
id |
doaj-7aec47fe253a4c8a80229bd52e804a67 |
---|---|
record_format |
Article |
spelling |
doaj-7aec47fe253a4c8a80229bd52e804a672021-06-13T11:49:32ZengNature Publishing Groupnpj Digital Medicine2398-63522021-06-014111410.1038/s41746-021-00459-8Leveraging artificial intelligence for pandemic preparedness and response: a scoping review to identify key use casesAnia Syrowatka0Masha Kuznetsova1Ava Alsubai2Adam L. Beckman3Paul A. Bain4Kelly Jean Thomas Craig5Jianying Hu6Gretchen Purcell Jackson7Kyu Rhee8David W. Bates9Division of General Internal Medicine, Brigham and Women’s HospitalHarvard Business SchoolDivision of General Internal Medicine, Brigham and Women’s HospitalHarvard Medical SchoolCountway Library of Medicine, Harvard Medical SchoolIBM Watson HealthIBM Research, Center for Computational HealthIBM Watson HealthIBM Watson HealthDivision of General Internal Medicine, Brigham and Women’s HospitalAbstract Artificial intelligence (AI) represents a valuable tool that could be widely used to inform clinical and public health decision-making to effectively manage the impacts of a pandemic. The objective of this scoping review was to identify the key use cases for involving AI for pandemic preparedness and response from the peer-reviewed, preprint, and grey literature. The data synthesis had two parts: an in-depth review of studies that leveraged machine learning (ML) techniques and a limited review of studies that applied traditional modeling approaches. ML applications from the in-depth review were categorized into use cases related to public health and clinical practice, and narratively synthesized. One hundred eighty-three articles met the inclusion criteria for the in-depth review. Six key use cases were identified: forecasting infectious disease dynamics and effects of interventions; surveillance and outbreak detection; real-time monitoring of adherence to public health recommendations; real-time detection of influenza-like illness; triage and timely diagnosis of infections; and prognosis of illness and response to treatment. Data sources and types of ML that were useful varied by use case. The search identified 1167 articles that reported on traditional modeling approaches, which highlighted additional areas where ML could be leveraged for improving the accuracy of estimations or projections. Important ML-based solutions have been developed in response to pandemics, and particularly for COVID-19 but few were optimized for practical application early in the pandemic. These findings can support policymakers, clinicians, and other stakeholders in prioritizing research and development to support operationalization of AI for future pandemics.https://doi.org/10.1038/s41746-021-00459-8 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Ania Syrowatka Masha Kuznetsova Ava Alsubai Adam L. Beckman Paul A. Bain Kelly Jean Thomas Craig Jianying Hu Gretchen Purcell Jackson Kyu Rhee David W. Bates |
spellingShingle |
Ania Syrowatka Masha Kuznetsova Ava Alsubai Adam L. Beckman Paul A. Bain Kelly Jean Thomas Craig Jianying Hu Gretchen Purcell Jackson Kyu Rhee David W. Bates Leveraging artificial intelligence for pandemic preparedness and response: a scoping review to identify key use cases npj Digital Medicine |
author_facet |
Ania Syrowatka Masha Kuznetsova Ava Alsubai Adam L. Beckman Paul A. Bain Kelly Jean Thomas Craig Jianying Hu Gretchen Purcell Jackson Kyu Rhee David W. Bates |
author_sort |
Ania Syrowatka |
title |
Leveraging artificial intelligence for pandemic preparedness and response: a scoping review to identify key use cases |
title_short |
Leveraging artificial intelligence for pandemic preparedness and response: a scoping review to identify key use cases |
title_full |
Leveraging artificial intelligence for pandemic preparedness and response: a scoping review to identify key use cases |
title_fullStr |
Leveraging artificial intelligence for pandemic preparedness and response: a scoping review to identify key use cases |
title_full_unstemmed |
Leveraging artificial intelligence for pandemic preparedness and response: a scoping review to identify key use cases |
title_sort |
leveraging artificial intelligence for pandemic preparedness and response: a scoping review to identify key use cases |
publisher |
Nature Publishing Group |
series |
npj Digital Medicine |
issn |
2398-6352 |
publishDate |
2021-06-01 |
description |
Abstract Artificial intelligence (AI) represents a valuable tool that could be widely used to inform clinical and public health decision-making to effectively manage the impacts of a pandemic. The objective of this scoping review was to identify the key use cases for involving AI for pandemic preparedness and response from the peer-reviewed, preprint, and grey literature. The data synthesis had two parts: an in-depth review of studies that leveraged machine learning (ML) techniques and a limited review of studies that applied traditional modeling approaches. ML applications from the in-depth review were categorized into use cases related to public health and clinical practice, and narratively synthesized. One hundred eighty-three articles met the inclusion criteria for the in-depth review. Six key use cases were identified: forecasting infectious disease dynamics and effects of interventions; surveillance and outbreak detection; real-time monitoring of adherence to public health recommendations; real-time detection of influenza-like illness; triage and timely diagnosis of infections; and prognosis of illness and response to treatment. Data sources and types of ML that were useful varied by use case. The search identified 1167 articles that reported on traditional modeling approaches, which highlighted additional areas where ML could be leveraged for improving the accuracy of estimations or projections. Important ML-based solutions have been developed in response to pandemics, and particularly for COVID-19 but few were optimized for practical application early in the pandemic. These findings can support policymakers, clinicians, and other stakeholders in prioritizing research and development to support operationalization of AI for future pandemics. |
url |
https://doi.org/10.1038/s41746-021-00459-8 |
work_keys_str_mv |
AT aniasyrowatka leveragingartificialintelligenceforpandemicpreparednessandresponseascopingreviewtoidentifykeyusecases AT mashakuznetsova leveragingartificialintelligenceforpandemicpreparednessandresponseascopingreviewtoidentifykeyusecases AT avaalsubai leveragingartificialintelligenceforpandemicpreparednessandresponseascopingreviewtoidentifykeyusecases AT adamlbeckman leveragingartificialintelligenceforpandemicpreparednessandresponseascopingreviewtoidentifykeyusecases AT paulabain leveragingartificialintelligenceforpandemicpreparednessandresponseascopingreviewtoidentifykeyusecases AT kellyjeanthomascraig leveragingartificialintelligenceforpandemicpreparednessandresponseascopingreviewtoidentifykeyusecases AT jianyinghu leveragingartificialintelligenceforpandemicpreparednessandresponseascopingreviewtoidentifykeyusecases AT gretchenpurcelljackson leveragingartificialintelligenceforpandemicpreparednessandresponseascopingreviewtoidentifykeyusecases AT kyurhee leveragingartificialintelligenceforpandemicpreparednessandresponseascopingreviewtoidentifykeyusecases AT davidwbates leveragingartificialintelligenceforpandemicpreparednessandresponseascopingreviewtoidentifykeyusecases |
_version_ |
1721379359645761536 |