Complete moment convergence of moving average processes for m-WOD sequence

Abstract In this paper, the complete moment convergence for the partial sum of moving average processes { X n = ∑ i = − ∞ ∞ a i Y i + n , n ≥ 1 } $\{X_{n}=\sum_{i=-\infty }^{\infty }a_{i}Y_{i+n},n\geq 1\}$ is established under some mild conditions, where { Y i , − ∞ < i < ∞ } $\{Y_{i},-\infty...

Full description

Bibliographic Details
Main Authors: Lihong Guan, Yushan Xiao, Yanan Zhao
Format: Article
Language:English
Published: SpringerOpen 2021-01-01
Series:Journal of Inequalities and Applications
Subjects:
Online Access:https://doi.org/10.1186/s13660-021-02546-6
id doaj-7ac3fe33dedc43dabcfed24daf170d88
record_format Article
spelling doaj-7ac3fe33dedc43dabcfed24daf170d882021-01-24T12:03:29ZengSpringerOpenJournal of Inequalities and Applications1029-242X2021-01-012021111210.1186/s13660-021-02546-6Complete moment convergence of moving average processes for m-WOD sequenceLihong Guan0Yushan Xiao1Yanan Zhao2School of Science, Changchun UniversitySchool of Science, Changchun UniversitySchool of Science, Changchun UniversityAbstract In this paper, the complete moment convergence for the partial sum of moving average processes { X n = ∑ i = − ∞ ∞ a i Y i + n , n ≥ 1 } $\{X_{n}=\sum_{i=-\infty }^{\infty }a_{i}Y_{i+n},n\geq 1\}$ is established under some mild conditions, where { Y i , − ∞ < i < ∞ } $\{Y_{i},-\infty < i<\infty \}$ is a sequence of m-widely orthant dependent (m-WOD, for short) random variables which is stochastically dominated by a random variable Y, and { a i , − ∞ < i < ∞ } $\{a_{i},-\infty < i<\infty \}$ is an absolutely summable sequence of real numbers. These conclusions promote and improve the corresponding results from m-extended negatively dependent (m-END, for short) sequences to m-WOD sequences.https://doi.org/10.1186/s13660-021-02546-6Moving average processesm-WODComplete moment convergence
collection DOAJ
language English
format Article
sources DOAJ
author Lihong Guan
Yushan Xiao
Yanan Zhao
spellingShingle Lihong Guan
Yushan Xiao
Yanan Zhao
Complete moment convergence of moving average processes for m-WOD sequence
Journal of Inequalities and Applications
Moving average processes
m-WOD
Complete moment convergence
author_facet Lihong Guan
Yushan Xiao
Yanan Zhao
author_sort Lihong Guan
title Complete moment convergence of moving average processes for m-WOD sequence
title_short Complete moment convergence of moving average processes for m-WOD sequence
title_full Complete moment convergence of moving average processes for m-WOD sequence
title_fullStr Complete moment convergence of moving average processes for m-WOD sequence
title_full_unstemmed Complete moment convergence of moving average processes for m-WOD sequence
title_sort complete moment convergence of moving average processes for m-wod sequence
publisher SpringerOpen
series Journal of Inequalities and Applications
issn 1029-242X
publishDate 2021-01-01
description Abstract In this paper, the complete moment convergence for the partial sum of moving average processes { X n = ∑ i = − ∞ ∞ a i Y i + n , n ≥ 1 } $\{X_{n}=\sum_{i=-\infty }^{\infty }a_{i}Y_{i+n},n\geq 1\}$ is established under some mild conditions, where { Y i , − ∞ < i < ∞ } $\{Y_{i},-\infty < i<\infty \}$ is a sequence of m-widely orthant dependent (m-WOD, for short) random variables which is stochastically dominated by a random variable Y, and { a i , − ∞ < i < ∞ } $\{a_{i},-\infty < i<\infty \}$ is an absolutely summable sequence of real numbers. These conclusions promote and improve the corresponding results from m-extended negatively dependent (m-END, for short) sequences to m-WOD sequences.
topic Moving average processes
m-WOD
Complete moment convergence
url https://doi.org/10.1186/s13660-021-02546-6
work_keys_str_mv AT lihongguan completemomentconvergenceofmovingaverageprocessesformwodsequence
AT yushanxiao completemomentconvergenceofmovingaverageprocessesformwodsequence
AT yananzhao completemomentconvergenceofmovingaverageprocessesformwodsequence
_version_ 1724326467674832896