Complete moment convergence of moving average processes for m-WOD sequence
Abstract In this paper, the complete moment convergence for the partial sum of moving average processes { X n = ∑ i = − ∞ ∞ a i Y i + n , n ≥ 1 } $\{X_{n}=\sum_{i=-\infty }^{\infty }a_{i}Y_{i+n},n\geq 1\}$ is established under some mild conditions, where { Y i , − ∞ < i < ∞ } $\{Y_{i},-\infty...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
SpringerOpen
2021-01-01
|
Series: | Journal of Inequalities and Applications |
Subjects: | |
Online Access: | https://doi.org/10.1186/s13660-021-02546-6 |
id |
doaj-7ac3fe33dedc43dabcfed24daf170d88 |
---|---|
record_format |
Article |
spelling |
doaj-7ac3fe33dedc43dabcfed24daf170d882021-01-24T12:03:29ZengSpringerOpenJournal of Inequalities and Applications1029-242X2021-01-012021111210.1186/s13660-021-02546-6Complete moment convergence of moving average processes for m-WOD sequenceLihong Guan0Yushan Xiao1Yanan Zhao2School of Science, Changchun UniversitySchool of Science, Changchun UniversitySchool of Science, Changchun UniversityAbstract In this paper, the complete moment convergence for the partial sum of moving average processes { X n = ∑ i = − ∞ ∞ a i Y i + n , n ≥ 1 } $\{X_{n}=\sum_{i=-\infty }^{\infty }a_{i}Y_{i+n},n\geq 1\}$ is established under some mild conditions, where { Y i , − ∞ < i < ∞ } $\{Y_{i},-\infty < i<\infty \}$ is a sequence of m-widely orthant dependent (m-WOD, for short) random variables which is stochastically dominated by a random variable Y, and { a i , − ∞ < i < ∞ } $\{a_{i},-\infty < i<\infty \}$ is an absolutely summable sequence of real numbers. These conclusions promote and improve the corresponding results from m-extended negatively dependent (m-END, for short) sequences to m-WOD sequences.https://doi.org/10.1186/s13660-021-02546-6Moving average processesm-WODComplete moment convergence |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Lihong Guan Yushan Xiao Yanan Zhao |
spellingShingle |
Lihong Guan Yushan Xiao Yanan Zhao Complete moment convergence of moving average processes for m-WOD sequence Journal of Inequalities and Applications Moving average processes m-WOD Complete moment convergence |
author_facet |
Lihong Guan Yushan Xiao Yanan Zhao |
author_sort |
Lihong Guan |
title |
Complete moment convergence of moving average processes for m-WOD sequence |
title_short |
Complete moment convergence of moving average processes for m-WOD sequence |
title_full |
Complete moment convergence of moving average processes for m-WOD sequence |
title_fullStr |
Complete moment convergence of moving average processes for m-WOD sequence |
title_full_unstemmed |
Complete moment convergence of moving average processes for m-WOD sequence |
title_sort |
complete moment convergence of moving average processes for m-wod sequence |
publisher |
SpringerOpen |
series |
Journal of Inequalities and Applications |
issn |
1029-242X |
publishDate |
2021-01-01 |
description |
Abstract In this paper, the complete moment convergence for the partial sum of moving average processes { X n = ∑ i = − ∞ ∞ a i Y i + n , n ≥ 1 } $\{X_{n}=\sum_{i=-\infty }^{\infty }a_{i}Y_{i+n},n\geq 1\}$ is established under some mild conditions, where { Y i , − ∞ < i < ∞ } $\{Y_{i},-\infty < i<\infty \}$ is a sequence of m-widely orthant dependent (m-WOD, for short) random variables which is stochastically dominated by a random variable Y, and { a i , − ∞ < i < ∞ } $\{a_{i},-\infty < i<\infty \}$ is an absolutely summable sequence of real numbers. These conclusions promote and improve the corresponding results from m-extended negatively dependent (m-END, for short) sequences to m-WOD sequences. |
topic |
Moving average processes m-WOD Complete moment convergence |
url |
https://doi.org/10.1186/s13660-021-02546-6 |
work_keys_str_mv |
AT lihongguan completemomentconvergenceofmovingaverageprocessesformwodsequence AT yushanxiao completemomentconvergenceofmovingaverageprocessesformwodsequence AT yananzhao completemomentconvergenceofmovingaverageprocessesformwodsequence |
_version_ |
1724326467674832896 |