BARRA v1.0: kilometre-scale downscaling of an Australian regional atmospheric reanalysis over four midlatitude domains

<p>Regional reanalyses provide a dynamically consistent recreation of past weather observations at scales useful for local-scale environmental applications. The development of convection-permitting models (CPMs) in numerical weather prediction has facilitated the creation of kilometre-scale (1...

Full description

Bibliographic Details
Main Authors: C.-H. Su, N. Eizenberg, D. Jakob, P. Fox-Hughes, P. Steinle, C. J. White, C. Franklin
Format: Article
Language:English
Published: Copernicus Publications 2021-07-01
Series:Geoscientific Model Development
Online Access:https://gmd.copernicus.org/articles/14/4357/2021/gmd-14-4357-2021.pdf
Description
Summary:<p>Regional reanalyses provide a dynamically consistent recreation of past weather observations at scales useful for local-scale environmental applications. The development of convection-permitting models (CPMs) in numerical weather prediction has facilitated the creation of kilometre-scale (1–4 <span class="inline-formula">km</span>) regional reanalysis and climate projections. The Bureau of Meteorology Atmospheric high-resolution Regional Reanalysis for Australia (BARRA) also aims to realize the benefits of these high-resolution models over Australian sub-regions for applications such as fire danger research by nesting them in BARRA's 12 <span class="inline-formula">km</span> regional reanalysis (BARRA-R). Four midlatitude sub-regions are centred on Perth in Western Australia, Adelaide in South Australia, Sydney in New South Wales (NSW), and Tasmania. The resulting 29-year 1.5 <span class="inline-formula">km</span> downscaled reanalyses (BARRA-C) are assessed for their added skill over BARRA-R and global reanalyses for near-surface parameters (temperature, wind, and precipitation) at observation locations and against independent 5 <span class="inline-formula">km</span> gridded analyses. BARRA-C demonstrates better agreement with point observations for temperature and wind, particularly in topographically complex regions and coastal regions. BARRA-C also improves upon BARRA-R in terms of the intensity and timing of precipitation during the thunderstorm seasons in NSW and spatial patterns of sub-daily rain fields during storm events. BARRA-C reflects known issues of CPMs: overestimation of heavy rain rates and rain cells, as well as underestimation of light rain occurrence. As a hindcast-only system, BARRA-C largely inherits the domain-averaged bias pattern from BARRA-R but does produce different climatological extremes for temperature and precipitation. An added-value analysis of temperature and precipitation extremes shows that BARRA-C provides additional skill over BARRA-R when compared to gridded observations. The spatial patterns of BARRA-C warm temperature extremes and wet precipitation extremes are more highly correlated with observations. BARRA-C adds value in the representation of the spatial pattern of cold extremes over coastal regions but remains biased in terms of magnitude.</p>
ISSN:1991-959X
1991-9603