Summary: | The energy-momentum localization for a new four-dimensional and spherically symmetric, charged black hole solution that through a coupling of general relativity with non-linear electrodynamics is everywhere non-singular while it satisfies the weak energy condition, is investigated. The Einstein and Møller energy-momentum complexes have been employed in order to calculate the energy distribution and the momenta for the aforesaid solution. It is found that the energy distribution depends explicitly on the mass and the charge of the black hole, on two parameters arising from the space-time geometry considered, and on the radial coordinate. Further, in both prescriptions all the momenta vanish. In addition, a comparison of the results obtained by the two energy-momentum complexes is made, whereby some limiting and particular cases are pointed out.
|