Microstructure and Flux Pinning of Reacted-and-Pressed, Polycrystalline Ba<sub>0.6</sub>K<sub>0.4</sub>Fe<sub>2</sub>As<sub>2</sub> Powders
The flux pinning properties of reacted-and-pressed Ba<sub>0.6</sub>K<sub>0.4</sub>Fe<sub>2</sub>As<sub>2</sub> powder were measured using magnetic hysteresis loops in the temperature range 20 K ≤ <i>T</i> ≤ 35 K. The sca...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2019-07-01
|
Series: | Materials |
Subjects: | |
Online Access: | https://www.mdpi.com/1996-1944/12/13/2173 |
id |
doaj-7abe0659675442018fbded21e8674d98 |
---|---|
record_format |
Article |
spelling |
doaj-7abe0659675442018fbded21e8674d982020-11-25T01:42:51ZengMDPI AGMaterials1996-19442019-07-011213217310.3390/ma12132173ma12132173Microstructure and Flux Pinning of Reacted-and-Pressed, Polycrystalline Ba<sub>0.6</sub>K<sub>0.4</sub>Fe<sub>2</sub>As<sub>2</sub> PowdersMichael R. Koblischka0Anjela Koblischka-Veneva1Jörg Schmauch2Masato Murakami3Experimental Physics, Saarland University, P.O. Box 151150, D-66044 Saarbrücken, GermanyExperimental Physics, Saarland University, P.O. Box 151150, D-66044 Saarbrücken, GermanyExperimental Physics, Saarland University, P.O. Box 151150, D-66044 Saarbrücken, GermanySuperconducting Materials Laboratory, Department of Materials Science and Engineering, Shibaura Institute of Technology, Tokyo 135-8548, JapanThe flux pinning properties of reacted-and-pressed Ba<sub>0.6</sub>K<sub>0.4</sub>Fe<sub>2</sub>As<sub>2</sub> powder were measured using magnetic hysteresis loops in the temperature range 20 K ≤ <i>T</i> ≤ 35 K. The scaling analysis of the flux pinning forces (<inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>F</mi> <mi>p</mi> </msub> <mo>=</mo> <msub> <mi>j</mi> <mi>c</mi> </msub> <mo>×</mo> <mi>B</mi> </mrow> </semantics> </math> </inline-formula>, with <inline-formula> <math display="inline"> <semantics> <msub> <mi>j</mi> <mi>c</mi> </msub> </semantics> </math> </inline-formula> denoting the critical current density) following the Dew-Hughes model reveals a dominant flux pinning provided by normal-conducting point defects (<inline-formula> <math display="inline"> <semantics> <mrow> <mi>δ</mi> <mi>l</mi> </mrow> </semantics> </math> </inline-formula>-pinning) with only small irreversibility fields, <inline-formula> <math display="inline"> <semantics> <msub> <mi>H</mi> <mi>irr</mi> </msub> </semantics> </math> </inline-formula>, ranging between 0.5 T (35 K) and 16 T (20 K). Kramer plots demonstrate a linear behavior above an applied field of 0.6 T. The samples were further characterized by electron backscatter diffraction (EBSD) analysis to elucidate the origin of the flux pinning. We compare our data with results of Weiss et al. (bulks) and Yao et al. (tapes), revealing that the dominant flux pinning in the samples for applications is provided mainly by grain boundary pinning, created by the densification procedures and the mechanical deformation applied.https://www.mdpi.com/1996-1944/12/13/2173iron-based superconductorscritical currentsflux pinningmicrostructure |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Michael R. Koblischka Anjela Koblischka-Veneva Jörg Schmauch Masato Murakami |
spellingShingle |
Michael R. Koblischka Anjela Koblischka-Veneva Jörg Schmauch Masato Murakami Microstructure and Flux Pinning of Reacted-and-Pressed, Polycrystalline Ba<sub>0.6</sub>K<sub>0.4</sub>Fe<sub>2</sub>As<sub>2</sub> Powders Materials iron-based superconductors critical currents flux pinning microstructure |
author_facet |
Michael R. Koblischka Anjela Koblischka-Veneva Jörg Schmauch Masato Murakami |
author_sort |
Michael R. Koblischka |
title |
Microstructure and Flux Pinning of Reacted-and-Pressed, Polycrystalline Ba<sub>0.6</sub>K<sub>0.4</sub>Fe<sub>2</sub>As<sub>2</sub> Powders |
title_short |
Microstructure and Flux Pinning of Reacted-and-Pressed, Polycrystalline Ba<sub>0.6</sub>K<sub>0.4</sub>Fe<sub>2</sub>As<sub>2</sub> Powders |
title_full |
Microstructure and Flux Pinning of Reacted-and-Pressed, Polycrystalline Ba<sub>0.6</sub>K<sub>0.4</sub>Fe<sub>2</sub>As<sub>2</sub> Powders |
title_fullStr |
Microstructure and Flux Pinning of Reacted-and-Pressed, Polycrystalline Ba<sub>0.6</sub>K<sub>0.4</sub>Fe<sub>2</sub>As<sub>2</sub> Powders |
title_full_unstemmed |
Microstructure and Flux Pinning of Reacted-and-Pressed, Polycrystalline Ba<sub>0.6</sub>K<sub>0.4</sub>Fe<sub>2</sub>As<sub>2</sub> Powders |
title_sort |
microstructure and flux pinning of reacted-and-pressed, polycrystalline ba<sub>0.6</sub>k<sub>0.4</sub>fe<sub>2</sub>as<sub>2</sub> powders |
publisher |
MDPI AG |
series |
Materials |
issn |
1996-1944 |
publishDate |
2019-07-01 |
description |
The flux pinning properties of reacted-and-pressed Ba<sub>0.6</sub>K<sub>0.4</sub>Fe<sub>2</sub>As<sub>2</sub> powder were measured using magnetic hysteresis loops in the temperature range 20 K ≤ <i>T</i> ≤ 35 K. The scaling analysis of the flux pinning forces (<inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>F</mi> <mi>p</mi> </msub> <mo>=</mo> <msub> <mi>j</mi> <mi>c</mi> </msub> <mo>×</mo> <mi>B</mi> </mrow> </semantics> </math> </inline-formula>, with <inline-formula> <math display="inline"> <semantics> <msub> <mi>j</mi> <mi>c</mi> </msub> </semantics> </math> </inline-formula> denoting the critical current density) following the Dew-Hughes model reveals a dominant flux pinning provided by normal-conducting point defects (<inline-formula> <math display="inline"> <semantics> <mrow> <mi>δ</mi> <mi>l</mi> </mrow> </semantics> </math> </inline-formula>-pinning) with only small irreversibility fields, <inline-formula> <math display="inline"> <semantics> <msub> <mi>H</mi> <mi>irr</mi> </msub> </semantics> </math> </inline-formula>, ranging between 0.5 T (35 K) and 16 T (20 K). Kramer plots demonstrate a linear behavior above an applied field of 0.6 T. The samples were further characterized by electron backscatter diffraction (EBSD) analysis to elucidate the origin of the flux pinning. We compare our data with results of Weiss et al. (bulks) and Yao et al. (tapes), revealing that the dominant flux pinning in the samples for applications is provided mainly by grain boundary pinning, created by the densification procedures and the mechanical deformation applied. |
topic |
iron-based superconductors critical currents flux pinning microstructure |
url |
https://www.mdpi.com/1996-1944/12/13/2173 |
work_keys_str_mv |
AT michaelrkoblischka microstructureandfluxpinningofreactedandpressedpolycrystallinebasub06subksub04subfesub2subassub2subpowders AT anjelakoblischkaveneva microstructureandfluxpinningofreactedandpressedpolycrystallinebasub06subksub04subfesub2subassub2subpowders AT jorgschmauch microstructureandfluxpinningofreactedandpressedpolycrystallinebasub06subksub04subfesub2subassub2subpowders AT masatomurakami microstructureandfluxpinningofreactedandpressedpolycrystallinebasub06subksub04subfesub2subassub2subpowders |
_version_ |
1725034733898825728 |