Existence of Solutions and Convergence of a Multistep Iterative Algorithm for a System of Variational Inclusions with <inline-formula><graphic file="1687-1812-2007-093678-i1.gif"/></inline-formula>-Accretive Operators
<p/> <p>We introduce and study a new system of variational inclusions with <inline-formula><graphic file="1687-1812-2007-093678-i2.gif"/></inline-formula>-accretive operators, which contains variational inequalities, variational inclusions, systems of variatio...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
SpringerOpen
2007-01-01
|
Series: | Fixed Point Theory and Applications |
Online Access: | http://www.fixedpointtheoryandapplications.com/content/2007/093678 |
id |
doaj-7ab59f4603bd4f89a173a1c9cd403853 |
---|---|
record_format |
Article |
spelling |
doaj-7ab59f4603bd4f89a173a1c9cd4038532020-11-25T01:03:47ZengSpringerOpenFixed Point Theory and Applications1687-18201687-18122007-01-0120071093678Existence of Solutions and Convergence of a Multistep Iterative Algorithm for a System of Variational Inclusions with <inline-formula><graphic file="1687-1812-2007-093678-i1.gif"/></inline-formula>-Accretive OperatorsZhu Dao-LiZheng Xiao-PingPeng Jian-Wen<p/> <p>We introduce and study a new system of variational inclusions with <inline-formula><graphic file="1687-1812-2007-093678-i2.gif"/></inline-formula>-accretive operators, which contains variational inequalities, variational inclusions, systems of variational inequalities, and systems of variational inclusions in the literature as special cases. By using the resolvent technique for the <inline-formula><graphic file="1687-1812-2007-093678-i3.gif"/></inline-formula>-accretive operators, we prove the existence and uniqueness of solution and the convergence of a new multistep iterative algorithm for this system of variational inclusions in real <inline-formula><graphic file="1687-1812-2007-093678-i4.gif"/></inline-formula>-uniformly smooth Banach spaces. The results in this paper unify, extend, and improve some known results in the literature.</p> http://www.fixedpointtheoryandapplications.com/content/2007/093678 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Zhu Dao-Li Zheng Xiao-Ping Peng Jian-Wen |
spellingShingle |
Zhu Dao-Li Zheng Xiao-Ping Peng Jian-Wen Existence of Solutions and Convergence of a Multistep Iterative Algorithm for a System of Variational Inclusions with <inline-formula><graphic file="1687-1812-2007-093678-i1.gif"/></inline-formula>-Accretive Operators Fixed Point Theory and Applications |
author_facet |
Zhu Dao-Li Zheng Xiao-Ping Peng Jian-Wen |
author_sort |
Zhu Dao-Li |
title |
Existence of Solutions and Convergence of a Multistep Iterative Algorithm for a System of Variational Inclusions with <inline-formula><graphic file="1687-1812-2007-093678-i1.gif"/></inline-formula>-Accretive Operators |
title_short |
Existence of Solutions and Convergence of a Multistep Iterative Algorithm for a System of Variational Inclusions with <inline-formula><graphic file="1687-1812-2007-093678-i1.gif"/></inline-formula>-Accretive Operators |
title_full |
Existence of Solutions and Convergence of a Multistep Iterative Algorithm for a System of Variational Inclusions with <inline-formula><graphic file="1687-1812-2007-093678-i1.gif"/></inline-formula>-Accretive Operators |
title_fullStr |
Existence of Solutions and Convergence of a Multistep Iterative Algorithm for a System of Variational Inclusions with <inline-formula><graphic file="1687-1812-2007-093678-i1.gif"/></inline-formula>-Accretive Operators |
title_full_unstemmed |
Existence of Solutions and Convergence of a Multistep Iterative Algorithm for a System of Variational Inclusions with <inline-formula><graphic file="1687-1812-2007-093678-i1.gif"/></inline-formula>-Accretive Operators |
title_sort |
existence of solutions and convergence of a multistep iterative algorithm for a system of variational inclusions with <inline-formula><graphic file="1687-1812-2007-093678-i1.gif"/></inline-formula>-accretive operators |
publisher |
SpringerOpen |
series |
Fixed Point Theory and Applications |
issn |
1687-1820 1687-1812 |
publishDate |
2007-01-01 |
description |
<p/> <p>We introduce and study a new system of variational inclusions with <inline-formula><graphic file="1687-1812-2007-093678-i2.gif"/></inline-formula>-accretive operators, which contains variational inequalities, variational inclusions, systems of variational inequalities, and systems of variational inclusions in the literature as special cases. By using the resolvent technique for the <inline-formula><graphic file="1687-1812-2007-093678-i3.gif"/></inline-formula>-accretive operators, we prove the existence and uniqueness of solution and the convergence of a new multistep iterative algorithm for this system of variational inclusions in real <inline-formula><graphic file="1687-1812-2007-093678-i4.gif"/></inline-formula>-uniformly smooth Banach spaces. The results in this paper unify, extend, and improve some known results in the literature.</p> |
url |
http://www.fixedpointtheoryandapplications.com/content/2007/093678 |
work_keys_str_mv |
AT zhudaoli existenceofsolutionsandconvergenceofamultistepiterativealgorithmforasystemofvariationalinclusionswithinlineformulagraphicfile168718122007093678i1gifinlineformulaaccretiveoperators AT zhengxiaoping existenceofsolutionsandconvergenceofamultistepiterativealgorithmforasystemofvariationalinclusionswithinlineformulagraphicfile168718122007093678i1gifinlineformulaaccretiveoperators AT pengjianwen existenceofsolutionsandconvergenceofamultistepiterativealgorithmforasystemofvariationalinclusionswithinlineformulagraphicfile168718122007093678i1gifinlineformulaaccretiveoperators |
_version_ |
1715864195714514944 |