Existence of Solutions and Convergence of a Multistep Iterative Algorithm for a System of Variational Inclusions with <inline-formula><graphic file="1687-1812-2007-093678-i1.gif"/></inline-formula>-Accretive Operators

<p/> <p>We introduce and study a new system of variational inclusions with <inline-formula><graphic file="1687-1812-2007-093678-i2.gif"/></inline-formula>-accretive operators, which contains variational inequalities, variational inclusions, systems of variatio...

Full description

Bibliographic Details
Main Authors: Zhu Dao-Li, Zheng Xiao-Ping, Peng Jian-Wen
Format: Article
Language:English
Published: SpringerOpen 2007-01-01
Series:Fixed Point Theory and Applications
Online Access:http://www.fixedpointtheoryandapplications.com/content/2007/093678
id doaj-7ab59f4603bd4f89a173a1c9cd403853
record_format Article
spelling doaj-7ab59f4603bd4f89a173a1c9cd4038532020-11-25T01:03:47ZengSpringerOpenFixed Point Theory and Applications1687-18201687-18122007-01-0120071093678Existence of Solutions and Convergence of a Multistep Iterative Algorithm for a System of Variational Inclusions with <inline-formula><graphic file="1687-1812-2007-093678-i1.gif"/></inline-formula>-Accretive OperatorsZhu Dao-LiZheng Xiao-PingPeng Jian-Wen<p/> <p>We introduce and study a new system of variational inclusions with <inline-formula><graphic file="1687-1812-2007-093678-i2.gif"/></inline-formula>-accretive operators, which contains variational inequalities, variational inclusions, systems of variational inequalities, and systems of variational inclusions in the literature as special cases. By using the resolvent technique for the <inline-formula><graphic file="1687-1812-2007-093678-i3.gif"/></inline-formula>-accretive operators, we prove the existence and uniqueness of solution and the convergence of a new multistep iterative algorithm for this system of variational inclusions in real <inline-formula><graphic file="1687-1812-2007-093678-i4.gif"/></inline-formula>-uniformly smooth Banach spaces. The results in this paper unify, extend, and improve some known results in the literature.</p> http://www.fixedpointtheoryandapplications.com/content/2007/093678
collection DOAJ
language English
format Article
sources DOAJ
author Zhu Dao-Li
Zheng Xiao-Ping
Peng Jian-Wen
spellingShingle Zhu Dao-Li
Zheng Xiao-Ping
Peng Jian-Wen
Existence of Solutions and Convergence of a Multistep Iterative Algorithm for a System of Variational Inclusions with <inline-formula><graphic file="1687-1812-2007-093678-i1.gif"/></inline-formula>-Accretive Operators
Fixed Point Theory and Applications
author_facet Zhu Dao-Li
Zheng Xiao-Ping
Peng Jian-Wen
author_sort Zhu Dao-Li
title Existence of Solutions and Convergence of a Multistep Iterative Algorithm for a System of Variational Inclusions with <inline-formula><graphic file="1687-1812-2007-093678-i1.gif"/></inline-formula>-Accretive Operators
title_short Existence of Solutions and Convergence of a Multistep Iterative Algorithm for a System of Variational Inclusions with <inline-formula><graphic file="1687-1812-2007-093678-i1.gif"/></inline-formula>-Accretive Operators
title_full Existence of Solutions and Convergence of a Multistep Iterative Algorithm for a System of Variational Inclusions with <inline-formula><graphic file="1687-1812-2007-093678-i1.gif"/></inline-formula>-Accretive Operators
title_fullStr Existence of Solutions and Convergence of a Multistep Iterative Algorithm for a System of Variational Inclusions with <inline-formula><graphic file="1687-1812-2007-093678-i1.gif"/></inline-formula>-Accretive Operators
title_full_unstemmed Existence of Solutions and Convergence of a Multistep Iterative Algorithm for a System of Variational Inclusions with <inline-formula><graphic file="1687-1812-2007-093678-i1.gif"/></inline-formula>-Accretive Operators
title_sort existence of solutions and convergence of a multistep iterative algorithm for a system of variational inclusions with <inline-formula><graphic file="1687-1812-2007-093678-i1.gif"/></inline-formula>-accretive operators
publisher SpringerOpen
series Fixed Point Theory and Applications
issn 1687-1820
1687-1812
publishDate 2007-01-01
description <p/> <p>We introduce and study a new system of variational inclusions with <inline-formula><graphic file="1687-1812-2007-093678-i2.gif"/></inline-formula>-accretive operators, which contains variational inequalities, variational inclusions, systems of variational inequalities, and systems of variational inclusions in the literature as special cases. By using the resolvent technique for the <inline-formula><graphic file="1687-1812-2007-093678-i3.gif"/></inline-formula>-accretive operators, we prove the existence and uniqueness of solution and the convergence of a new multistep iterative algorithm for this system of variational inclusions in real <inline-formula><graphic file="1687-1812-2007-093678-i4.gif"/></inline-formula>-uniformly smooth Banach spaces. The results in this paper unify, extend, and improve some known results in the literature.</p>
url http://www.fixedpointtheoryandapplications.com/content/2007/093678
work_keys_str_mv AT zhudaoli existenceofsolutionsandconvergenceofamultistepiterativealgorithmforasystemofvariationalinclusionswithinlineformulagraphicfile168718122007093678i1gifinlineformulaaccretiveoperators
AT zhengxiaoping existenceofsolutionsandconvergenceofamultistepiterativealgorithmforasystemofvariationalinclusionswithinlineformulagraphicfile168718122007093678i1gifinlineformulaaccretiveoperators
AT pengjianwen existenceofsolutionsandconvergenceofamultistepiterativealgorithmforasystemofvariationalinclusionswithinlineformulagraphicfile168718122007093678i1gifinlineformulaaccretiveoperators
_version_ 1715864195714514944