Detection of Pin Defects in Aerial Images Based on Cascaded Convolutional Neural Network

Pins are standard fasteners in power transmission lines, and the hidden dangers of pins falling off dramatically affects their safe operation. If a pin is missed, it is called pin defects in this paper. As the pin is a small target and has a complex background, traditional detection algorithms were...

Full description

Bibliographic Details
Main Authors: Yewei Xiao, Zhiqiang Li, Dongbo Zhang, Lianwei Teng
Format: Article
Language:English
Published: IEEE 2021-01-01
Series:IEEE Access
Subjects:
Online Access:https://ieeexplore.ieee.org/document/9427490/
Description
Summary:Pins are standard fasteners in power transmission lines, and the hidden dangers of pins falling off dramatically affects their safe operation. If a pin is missed, it is called pin defects in this paper. As the pin is a small target and has a complex background, traditional detection algorithms were used to identify pin defects from aerial images which suffer from poor accuracy and low efficiency. This paper proposed a target detection method based on cascaded convolutional neural networks. First, a small-scale shallow full convolutional neural network was used to obtain the region of interest; then, a deeper convolutional neural network conducted target classification and positioning on the obtained region of interest. Next, a nonlinear multilayer perceptron was introduced, the convolution kernel was decomposed, and the multi-scale feature maps were fused. At this point, an angle variable was added to the classification cross-entropy loss function. Multi-task learning and offline hard sample mining strategies were used in the training phase. The proposed method was tested on a self-built pin dataset and the remote sensing image RSOD dataset, and the experimental results proved its effectiveness. Our method can accurately identify pin defects in aerial images, thereby solving the engineering application problem of pin defect detection in transmission lines.
ISSN:2169-3536