Stability Analysis of Sampled-Data Control Systems With Constant Communication Delays

This paper deals with the problem of stability for aperiodically sampled-data control systems with constant communication delays. Less conservative results are derived by two main techniques. First, a new looped-functional-based Lyapunov function is proposed, which considers the information of inter...

Full description

Bibliographic Details
Main Authors: Hong-Bing Zeng, Zheng-Liang Zhai, Hui-Qin Xiao, Wei Wang
Format: Article
Language:English
Published: IEEE 2019-01-01
Series:IEEE Access
Subjects:
Online Access:https://ieeexplore.ieee.org/document/8561281/
id doaj-7a8aae62103e4d81b991cd7f975223a1
record_format Article
spelling doaj-7a8aae62103e4d81b991cd7f975223a12021-03-29T22:06:05ZengIEEEIEEE Access2169-35362019-01-01711111610.1109/ACCESS.2018.28850598561281Stability Analysis of Sampled-Data Control Systems With Constant Communication DelaysHong-Bing Zeng0Zheng-Liang Zhai1Hui-Qin Xiao2https://orcid.org/0000-0002-0957-2502Wei Wang3School of Electrical and Information Engineering, Hunan University of Technology, Zhuzhou, ChinaSchool of Electrical and Information Engineering, Hunan University of Technology, Zhuzhou, ChinaSchool of Electrical and Information Engineering, Hunan University of Technology, Zhuzhou, ChinaSchool of Electrical and Information Engineering, Hunan University of Technology, Zhuzhou, ChinaThis paper deals with the problem of stability for aperiodically sampled-data control systems with constant communication delays. Less conservative results are derived by two main techniques. First, a new looped-functional-based Lyapunov function is proposed, which considers the information of intervals <inline-formula> <tex-math notation="LaTeX">$x({t_{k}})$ </tex-math></inline-formula> to <inline-formula> <tex-math notation="LaTeX">$x(t)$ </tex-math></inline-formula>, <inline-formula> <tex-math notation="LaTeX">$x(t)$ </tex-math></inline-formula> to <inline-formula> <tex-math notation="LaTeX">$x({t_{k + 1}})$ </tex-math></inline-formula>, <inline-formula> <tex-math notation="LaTeX">$x(t_{k}-\tau)$ </tex-math></inline-formula> to <inline-formula> <tex-math notation="LaTeX">$x(t-\tau)$ </tex-math></inline-formula>, and <inline-formula> <tex-math notation="LaTeX">$x(t-\tau)$ </tex-math></inline-formula> to <inline-formula> <tex-math notation="LaTeX">$x(t_{k+1}-\tau)$ </tex-math></inline-formula>. Second, in the derivative of the Lyapunov function, the integral term which has the information of sampling-period plus communication delay is divided into three parts. Then, by employing integral inequality techniques, some improved stability conditions are derived. The numerical examples demonstrate the validity of the proposed methods.https://ieeexplore.ieee.org/document/8561281/Stabilitysampled-data control systemscommunication delayintegral inequality
collection DOAJ
language English
format Article
sources DOAJ
author Hong-Bing Zeng
Zheng-Liang Zhai
Hui-Qin Xiao
Wei Wang
spellingShingle Hong-Bing Zeng
Zheng-Liang Zhai
Hui-Qin Xiao
Wei Wang
Stability Analysis of Sampled-Data Control Systems With Constant Communication Delays
IEEE Access
Stability
sampled-data control systems
communication delay
integral inequality
author_facet Hong-Bing Zeng
Zheng-Liang Zhai
Hui-Qin Xiao
Wei Wang
author_sort Hong-Bing Zeng
title Stability Analysis of Sampled-Data Control Systems With Constant Communication Delays
title_short Stability Analysis of Sampled-Data Control Systems With Constant Communication Delays
title_full Stability Analysis of Sampled-Data Control Systems With Constant Communication Delays
title_fullStr Stability Analysis of Sampled-Data Control Systems With Constant Communication Delays
title_full_unstemmed Stability Analysis of Sampled-Data Control Systems With Constant Communication Delays
title_sort stability analysis of sampled-data control systems with constant communication delays
publisher IEEE
series IEEE Access
issn 2169-3536
publishDate 2019-01-01
description This paper deals with the problem of stability for aperiodically sampled-data control systems with constant communication delays. Less conservative results are derived by two main techniques. First, a new looped-functional-based Lyapunov function is proposed, which considers the information of intervals <inline-formula> <tex-math notation="LaTeX">$x({t_{k}})$ </tex-math></inline-formula> to <inline-formula> <tex-math notation="LaTeX">$x(t)$ </tex-math></inline-formula>, <inline-formula> <tex-math notation="LaTeX">$x(t)$ </tex-math></inline-formula> to <inline-formula> <tex-math notation="LaTeX">$x({t_{k + 1}})$ </tex-math></inline-formula>, <inline-formula> <tex-math notation="LaTeX">$x(t_{k}-\tau)$ </tex-math></inline-formula> to <inline-formula> <tex-math notation="LaTeX">$x(t-\tau)$ </tex-math></inline-formula>, and <inline-formula> <tex-math notation="LaTeX">$x(t-\tau)$ </tex-math></inline-formula> to <inline-formula> <tex-math notation="LaTeX">$x(t_{k+1}-\tau)$ </tex-math></inline-formula>. Second, in the derivative of the Lyapunov function, the integral term which has the information of sampling-period plus communication delay is divided into three parts. Then, by employing integral inequality techniques, some improved stability conditions are derived. The numerical examples demonstrate the validity of the proposed methods.
topic Stability
sampled-data control systems
communication delay
integral inequality
url https://ieeexplore.ieee.org/document/8561281/
work_keys_str_mv AT hongbingzeng stabilityanalysisofsampleddatacontrolsystemswithconstantcommunicationdelays
AT zhengliangzhai stabilityanalysisofsampleddatacontrolsystemswithconstantcommunicationdelays
AT huiqinxiao stabilityanalysisofsampleddatacontrolsystemswithconstantcommunicationdelays
AT weiwang stabilityanalysisofsampleddatacontrolsystemswithconstantcommunicationdelays
_version_ 1724192178900566016