Diffusion-thermo Effects in Stagnation Point Flow of Second Grade Fluid past a Stretching Plate
Transmission of heat and mass in boundary layer flows over stretching surfaces play a significant role in metallurgy and polymer industry. In Current article the assisting and opposing flow of a second grade fluid towards a stretching sheet is analyzed to examine the heat and mass transfer in stagna...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Shahid Chamran University of Ahvaz
2021-04-01
|
Series: | Journal of Applied and Computational Mechanics |
Subjects: | |
Online Access: | https://jacm.scu.ac.ir/article_16370_5a2ccc11012d4896fb8e9c7030de415a.pdf |
id |
doaj-7a61e2cfd8eb4c3c9ab8c05e59185ebb |
---|---|
record_format |
Article |
spelling |
doaj-7a61e2cfd8eb4c3c9ab8c05e59185ebb2021-02-04T16:51:02ZengShahid Chamran University of AhvazJournal of Applied and Computational Mechanics2383-45362383-45362021-04-017290291210.22055/jacm.2021.35332.263016370Diffusion-thermo Effects in Stagnation Point Flow of Second Grade Fluid past a Stretching PlateSudheer Khan0Syed Muhammad Imran1Shu Wang2College of Applied Science, Beijing University of Technology, Beijing 100124, P.R. ChinaGovt Postgraduate College Attock, PakistanCollege of Applied Science, Beijing University of Technology, Beijing 100124, P.R. ChinaTransmission of heat and mass in boundary layer flows over stretching surfaces play a significant role in metallurgy and polymer industry. In Current article the assisting and opposing flow of a second grade fluid towards a stretching sheet is analyzed to examine the heat and mass transfer in stagnation point boundary layer flow. Different flow parameters such as concentration, surface temperature and stretching velocity are supposed to variate linearly. The basic transport equations are transformed into non-linear ordinary differential equations by means of boundary layer approximation and similarity transmutations, which are then solved by employing nonlinear shooting (NLS) and Keller-box methods (KBM). These techniques are very useful for solving boundary-layer problems and are applicable to other general situations than that presented current study. The outcomes of velocity, temperature, concentration profile, skin-friction coefficient, heat and mass transfer coefficients are analyzed briefly in graphical and tabular formats. The mass transmission rate was found to be in direct relation with Schmidt number. Moreover, we predict that a rise in Prandtl number leads to a decline in temperature and thermal layer of boundary thickness for both supporting and contrasting flows. The outcomes of this article are important for the analysts in the field of second grade fluids. We believe that the article is very well prepared and the results are original and useful from both theoretical and application point of views.https://jacm.scu.ac.ir/article_16370_5a2ccc11012d4896fb8e9c7030de415a.pdfboundary layerstretching sheetheat transfermass transfersecond-grade fluid |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Sudheer Khan Syed Muhammad Imran Shu Wang |
spellingShingle |
Sudheer Khan Syed Muhammad Imran Shu Wang Diffusion-thermo Effects in Stagnation Point Flow of Second Grade Fluid past a Stretching Plate Journal of Applied and Computational Mechanics boundary layer stretching sheet heat transfer mass transfer second-grade fluid |
author_facet |
Sudheer Khan Syed Muhammad Imran Shu Wang |
author_sort |
Sudheer Khan |
title |
Diffusion-thermo Effects in Stagnation Point Flow of Second Grade Fluid past a Stretching Plate |
title_short |
Diffusion-thermo Effects in Stagnation Point Flow of Second Grade Fluid past a Stretching Plate |
title_full |
Diffusion-thermo Effects in Stagnation Point Flow of Second Grade Fluid past a Stretching Plate |
title_fullStr |
Diffusion-thermo Effects in Stagnation Point Flow of Second Grade Fluid past a Stretching Plate |
title_full_unstemmed |
Diffusion-thermo Effects in Stagnation Point Flow of Second Grade Fluid past a Stretching Plate |
title_sort |
diffusion-thermo effects in stagnation point flow of second grade fluid past a stretching plate |
publisher |
Shahid Chamran University of Ahvaz |
series |
Journal of Applied and Computational Mechanics |
issn |
2383-4536 2383-4536 |
publishDate |
2021-04-01 |
description |
Transmission of heat and mass in boundary layer flows over stretching surfaces play a significant role in metallurgy and polymer industry. In Current article the assisting and opposing flow of a second grade fluid towards a stretching sheet is analyzed to examine the heat and mass transfer in stagnation point boundary layer flow. Different flow parameters such as concentration, surface temperature and stretching velocity are supposed to variate linearly. The basic transport equations are transformed into non-linear ordinary differential equations by means of boundary layer approximation and similarity transmutations, which are then solved by employing nonlinear shooting (NLS) and Keller-box methods (KBM). These techniques are very useful for solving boundary-layer problems and are applicable to other general situations than that presented current study. The outcomes of velocity, temperature, concentration profile, skin-friction coefficient, heat and mass transfer coefficients are analyzed briefly in graphical and tabular formats. The mass transmission rate was found to be in direct relation with Schmidt number. Moreover, we predict that a rise in Prandtl number leads to a decline in temperature and thermal layer of boundary thickness for both supporting and contrasting flows. The outcomes of this article are important for the analysts in the field of second grade fluids. We believe that the article is very well prepared and the results are original and useful from both theoretical and application point of views. |
topic |
boundary layer stretching sheet heat transfer mass transfer second-grade fluid |
url |
https://jacm.scu.ac.ir/article_16370_5a2ccc11012d4896fb8e9c7030de415a.pdf |
work_keys_str_mv |
AT sudheerkhan diffusionthermoeffectsinstagnationpointflowofsecondgradefluidpastastretchingplate AT syedmuhammadimran diffusionthermoeffectsinstagnationpointflowofsecondgradefluidpastastretchingplate AT shuwang diffusionthermoeffectsinstagnationpointflowofsecondgradefluidpastastretchingplate |
_version_ |
1724285138884362240 |