Dietary carbohydrate, particularly glucose, drives B cell lymphopoiesis and function

Summary: While diet modulates immunity, its impact on B cell ontogeny remains unclear. Using mixture modeling, a large-scale isocaloric dietary cohort mouse study identified carbohydrate as a major driver of B cell development and function. Increasing dietary carbohydrate increased B cell proportion...

Full description

Bibliographic Details
Main Authors: Jian Tan, Duan Ni, Jibran Abdul Wali, Darren Anthony Cox, Gabriela Veronica Pinget, Jemma Taitz, Claire Immediato Daïen, Alistair Senior, Mark Norman Read, Stephen James Simpson, Nicholas Jonathan Cole King, Laurence Macia
Format: Article
Language:English
Published: Elsevier 2021-08-01
Series:iScience
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2589004221008038
Description
Summary:Summary: While diet modulates immunity, its impact on B cell ontogeny remains unclear. Using mixture modeling, a large-scale isocaloric dietary cohort mouse study identified carbohydrate as a major driver of B cell development and function. Increasing dietary carbohydrate increased B cell proportions in spleen, mesenteric lymph node and Peyer’s patches, and increased antigen-specific immunoglobulin G production after immunization. This was linked to increased B lymphopoiesis in the bone marrow. Glucose promoted early B lymphopoiesis and higher total B lymphocyte numbers than fructose. It drove B cell development through glycolysis and oxidative phosphorylation, independently of fatty acid oxidation in vitro and reduced B cell apoptosis in early development via mTOR activation, independently of interleukin-7. Ours is the first comprehensive study showing the impact of macronutrients on B cell development and function. It shows the quantitative and qualitative interplay between dietary carbohydrate and B cells and argues for dietary modulation in B cell-targeting strategies.
ISSN:2589-0042