Adaptive Non-Rigid Point Set Registration Based on Variational Bayesian

For the existence of outliers in non-rigid point set registration, a method based on Bayesian student's t mixture model(SMM) is proposed. Under the framework of variational Bayesian, the point set registration problem is converted to maximize the variational lower bound of log-likelihood, where...

Full description

Bibliographic Details
Format: Article
Language:zho
Published: The Northwestern Polytechnical University 2018-10-01
Series:Xibei Gongye Daxue Xuebao
Subjects:
Online Access:https://www.jnwpu.org/articles/jnwpu/pdf/2018/05/jnwpu2018365p942.pdf
Description
Summary:For the existence of outliers in non-rigid point set registration, a method based on Bayesian student's t mixture model(SMM) is proposed. Under the framework of variational Bayesian, the point set registration problem is converted to maximize the variational lower bound of log-likelihood, where the transformation parameters are found through variational inference. By prior model, the constraint over spatial regularization is incorporated into the Bayesian SMM, which can adaptively be determined for different data sets. Compared with Gaussian distribution, the student's t distribution is more robust to outliers. The experimental comparative analysis of simulated points and real images verify the effectiveness of the proposed method on the non-rigid point set registration with outliers.
ISSN:1000-2758
2609-7125