Calving Fronts of Antarctica: Mapping and Classification

Antarctica is surrounded by a variety of large, medium and small sized ice shelves, glacier tongues and coastal areas without offshore floating ice masses. We used the mosaic of the Radarsat-1 Antarctica Mapping Project (RAMP) Antarctic Mapping Mission 1 (AMM) to classify the coastline of Antarctica...

Full description

Bibliographic Details
Main Authors: Christine Wesche, Daniela Jansen, Wolfgang Dierking
Format: Article
Language:English
Published: MDPI AG 2013-11-01
Series:Remote Sensing
Subjects:
SAR
Online Access:http://www.mdpi.com/2072-4292/5/12/6305
Description
Summary:Antarctica is surrounded by a variety of large, medium and small sized ice shelves, glacier tongues and coastal areas without offshore floating ice masses. We used the mosaic of the Radarsat-1 Antarctica Mapping Project (RAMP) Antarctic Mapping Mission 1 (AMM) to classify the coastline of Antarctica in terms of surface structure patterns close to the calving front. With the aid of an automated edge detection method, complemented by manual control, the surface structures of all ice shelves and glacier tongues around Antarctica were mapped. We found dense and less dense patterns of surface structures unevenly distributed over the ice shelves and ice tongues. Dense surface patterns are frequent on fast flowing ice masses (ice streams), whereas most ice shelves show a dense surface pattern only close to the grounding line. Flow line analyses on ten ice shelves reveal that the time of residence of the ice along a flow path and—associated with it—the healing of surface crevasses can explain the different surface structure distribution close to the grounding line and the calving front on many ice shelves. Based on the surface structures relative to the calving front within a 15 km-wide seaward strip, the ice shelf fronts can be separated into three classes. The resulting map of the classified calving fronts around Antarctica and their description provide a detailed picture of crevasse formation and the observed dominant iceberg shapes.
ISSN:2072-4292