Effect of the Fe Nanoparticles Generated by Pulsed Plasma in Liquid in the Catalyzed Ozone Removal of Phenolphthalein
We have synthesized, in this work, zero valent iron (ZVI) nanoparticles to improve the efficiency of degradation of phenolphthalein catalyzed by ozone in aqueous solution. The Fe nanoparticles were obtained using the pulsed plasma in liquid (PPL) method with water as the liquid medium. Such nanopart...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Hindawi Limited
2017-01-01
|
Series: | International Journal of Photoenergy |
Online Access: | http://dx.doi.org/10.1155/2017/9314764 |
id |
doaj-7a31b00b29c849d6ab87b2489b194960 |
---|---|
record_format |
Article |
spelling |
doaj-7a31b00b29c849d6ab87b2489b1949602020-11-24T22:15:08ZengHindawi LimitedInternational Journal of Photoenergy1110-662X1687-529X2017-01-01201710.1155/2017/93147649314764Effect of the Fe Nanoparticles Generated by Pulsed Plasma in Liquid in the Catalyzed Ozone Removal of PhenolphthaleinO. Olea-Mejia0M. Fernández-Mondragón1C. Barrera-Díaz2A. Cabral-Prieto3Centro Conjunto de Investigación en Química Sustentable (CCIQS) UAEM-UNAM, Universidad Autónoma del Estado de México, Carr. Toluca-Atlacomulco km 14.5, 50200 Toluca, MEX, MexicoCentro Conjunto de Investigación en Química Sustentable (CCIQS) UAEM-UNAM, Universidad Autónoma del Estado de México, Carr. Toluca-Atlacomulco km 14.5, 50200 Toluca, MEX, MexicoCentro Conjunto de Investigación en Química Sustentable (CCIQS) UAEM-UNAM, Universidad Autónoma del Estado de México, Carr. Toluca-Atlacomulco km 14.5, 50200 Toluca, MEX, MexicoDepartamento de Física, Instituto Nacional de Investigaciones Nucleares, Apdo. Postal 18-1027, Mexico City, MexicoWe have synthesized, in this work, zero valent iron (ZVI) nanoparticles to improve the efficiency of degradation of phenolphthalein catalyzed by ozone in aqueous solution. The Fe nanoparticles were obtained using the pulsed plasma in liquid (PPL) method with water as the liquid medium. Such nanoparticles have a mean size of 12 nm and are composed of ~80% Fe0, while the rest are a mixture of Fe+2 and Fe+3 oxides. The degradation of phenolphthalein was carried on a glass reactor injecting a constant amount of ozone and introducing different concentrations of Fe nanoparticles to the system. When using pure ozone, the percentage of degradation of phenolphthalein measured by colorimetry after one hour of reaction was 84%. However, when Fe nanoparticles are used, such percentage can be as high as 98% in 50 minutes of reaction. Furthermore, the degradation rate constant was 0.0334 min−1 with only ozone and it can be as high as 0.0733 min−1 with Fe nanoparticles. Finally, the total mineralization of phenolphthalein was obtained by total organic carbon (TOC) determinations. It is shown that when using only ozone, we obtained a percentage of mineralization of 49% and 96% when using the highest concentration of Fe nanoparticles.http://dx.doi.org/10.1155/2017/9314764 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
O. Olea-Mejia M. Fernández-Mondragón C. Barrera-Díaz A. Cabral-Prieto |
spellingShingle |
O. Olea-Mejia M. Fernández-Mondragón C. Barrera-Díaz A. Cabral-Prieto Effect of the Fe Nanoparticles Generated by Pulsed Plasma in Liquid in the Catalyzed Ozone Removal of Phenolphthalein International Journal of Photoenergy |
author_facet |
O. Olea-Mejia M. Fernández-Mondragón C. Barrera-Díaz A. Cabral-Prieto |
author_sort |
O. Olea-Mejia |
title |
Effect of the Fe Nanoparticles Generated by Pulsed Plasma in Liquid in the Catalyzed Ozone Removal of Phenolphthalein |
title_short |
Effect of the Fe Nanoparticles Generated by Pulsed Plasma in Liquid in the Catalyzed Ozone Removal of Phenolphthalein |
title_full |
Effect of the Fe Nanoparticles Generated by Pulsed Plasma in Liquid in the Catalyzed Ozone Removal of Phenolphthalein |
title_fullStr |
Effect of the Fe Nanoparticles Generated by Pulsed Plasma in Liquid in the Catalyzed Ozone Removal of Phenolphthalein |
title_full_unstemmed |
Effect of the Fe Nanoparticles Generated by Pulsed Plasma in Liquid in the Catalyzed Ozone Removal of Phenolphthalein |
title_sort |
effect of the fe nanoparticles generated by pulsed plasma in liquid in the catalyzed ozone removal of phenolphthalein |
publisher |
Hindawi Limited |
series |
International Journal of Photoenergy |
issn |
1110-662X 1687-529X |
publishDate |
2017-01-01 |
description |
We have synthesized, in this work, zero valent iron (ZVI) nanoparticles to improve the efficiency of degradation of phenolphthalein catalyzed by ozone in aqueous solution. The Fe nanoparticles were obtained using the pulsed plasma in liquid (PPL) method with water as the liquid medium. Such nanoparticles have a mean size of 12 nm and are composed of ~80% Fe0, while the rest are a mixture of Fe+2 and Fe+3 oxides. The degradation of phenolphthalein was carried on a glass reactor injecting a constant amount of ozone and introducing different concentrations of Fe nanoparticles to the system. When using pure ozone, the percentage of degradation of phenolphthalein measured by colorimetry after one hour of reaction was 84%. However, when Fe nanoparticles are used, such percentage can be as high as 98% in 50 minutes of reaction. Furthermore, the degradation rate constant was 0.0334 min−1 with only ozone and it can be as high as 0.0733 min−1 with Fe nanoparticles. Finally, the total mineralization of phenolphthalein was obtained by total organic carbon (TOC) determinations. It is shown that when using only ozone, we obtained a percentage of mineralization of 49% and 96% when using the highest concentration of Fe nanoparticles. |
url |
http://dx.doi.org/10.1155/2017/9314764 |
work_keys_str_mv |
AT ooleamejia effectofthefenanoparticlesgeneratedbypulsedplasmainliquidinthecatalyzedozoneremovalofphenolphthalein AT mfernandezmondragon effectofthefenanoparticlesgeneratedbypulsedplasmainliquidinthecatalyzedozoneremovalofphenolphthalein AT cbarreradiaz effectofthefenanoparticlesgeneratedbypulsedplasmainliquidinthecatalyzedozoneremovalofphenolphthalein AT acabralprieto effectofthefenanoparticlesgeneratedbypulsedplasmainliquidinthecatalyzedozoneremovalofphenolphthalein |
_version_ |
1725795931567161344 |