Stationary Distribution and Extinction of a Stochastic SIQR Model with Saturated Incidence Rate
In this paper, we consider a stochastic SIQR epidemic model with saturated incidence rate. By constructing a proper Lyapunov function, we obtain the existence and uniqueness of positive solution for this SIQR model. Furthermore, we study the dynamical properties of this stochastic SIQR model; that i...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Hindawi Limited
2019-01-01
|
Series: | Mathematical Problems in Engineering |
Online Access: | http://dx.doi.org/10.1155/2019/3575410 |
Summary: | In this paper, we consider a stochastic SIQR epidemic model with saturated incidence rate. By constructing a proper Lyapunov function, we obtain the existence and uniqueness of positive solution for this SIQR model. Furthermore, we study the dynamical properties of this stochastic SIQR model; that is, (i) we establish the sufficient condition for the existence of ergodic stationary distribution of the model; (ii) we obtain the extinction of the disease under some conditions. At last, numerical simulations are introduced to illustrate our theoretical results. |
---|---|
ISSN: | 1024-123X 1563-5147 |