Sediment Transport Model Quantifies Plume Length and Light Conditions From Mussel Dredging
Mussel dredging causes resuspension of sediment particles that reduce water clarity and potentially leads to reduced eelgrass growth. In order to study the impact of resuspension from mussel dredging on light conditions in the water column, field experiments were conducted at two sites in the Limfjo...
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Frontiers Media S.A.
2020-10-01
|
Series: | Frontiers in Marine Science |
Subjects: | |
Online Access: | https://www.frontiersin.org/articles/10.3389/fmars.2020.576530/full |
id |
doaj-7a11e5adcd8b4b359d98cb5a8bed5a0f |
---|---|
record_format |
Article |
spelling |
doaj-7a11e5adcd8b4b359d98cb5a8bed5a0f2020-11-25T03:41:21ZengFrontiers Media S.A.Frontiers in Marine Science2296-77452020-10-01710.3389/fmars.2020.576530576530Sediment Transport Model Quantifies Plume Length and Light Conditions From Mussel DredgingAne Pastor0Janus Larsen1Christian Mohn2Camille Saurel3Jens Kjerulf Petersen4Marie Maar5Department of Bioscience, Aarhus University, Roskilde, DenmarkDepartment of Bioscience, Aarhus University, Roskilde, DenmarkDepartment of Bioscience, Aarhus University, Roskilde, DenmarkDanish Shellfish Centre, National Institute of Aquatic Resources, Technical University of Denmark, Nykøbing Mors, DenmarkDanish Shellfish Centre, National Institute of Aquatic Resources, Technical University of Denmark, Nykøbing Mors, DenmarkDepartment of Bioscience, Aarhus University, Roskilde, DenmarkMussel dredging causes resuspension of sediment particles that reduce water clarity and potentially leads to reduced eelgrass growth. In order to study the impact of resuspension from mussel dredging on light conditions in the water column, field experiments were conducted at two sites in the Limfjorden. Light loggers were placed in two circular arrays around the dredge area. Vertical profiles of current velocity were measured by an ADCP and the sediment particle size composition was obtained from sediment core samples. The field data was used to force, calibrate and validate a sediment transport model developed in the FlexSem model system. Changes in sediment concentrations during and after mussel dredging were modeled for the two sites and for seven scenarios. We found that the distance and direction of the plume in the model was in good agreement with light logger data. The plume duration was less than 1 h, and the impact range was between 260–540 m. The scenarios showed that fishing intensity and current speeds were most important for shaping the sediment plumes. Changes in suspended sediment concentrations were 0.62–1.79 mg l–1 on median average and 1.22–11.61 mg l–1 for the upper quantile of the plume, which were on the same order of magnitude as background values in the Limfjorden. The amount of fishing days during the eelgrass growth season was 6–8% in Lovns Bredning and 16–35% in Løgstør Bredning and less than 1–2% of the total area was dredged per season. Even though there are substantial changes in the light conditions from the sediment plumes, the overall spatio-temporal impact in the study area is considered low. We recommend that management plans in other areas could sustain a shellfish fishery by limiting fishing intensity and frequency near eelgrass beds. The presented approach combines observational data, sediment transport modeling and reported fishing activity. It is a step forward within sediment transport modeling and could be incorporated into environmental impact assessments. The results have recently been used as scientific background for recommendations to improve the management plans according to the Danish Mussel Policy and relevant EU Directives.https://www.frontiersin.org/articles/10.3389/fmars.2020.576530/fullsediment transport modelLimfjordenmussel fisherysediment plumeslight |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Ane Pastor Janus Larsen Christian Mohn Camille Saurel Jens Kjerulf Petersen Marie Maar |
spellingShingle |
Ane Pastor Janus Larsen Christian Mohn Camille Saurel Jens Kjerulf Petersen Marie Maar Sediment Transport Model Quantifies Plume Length and Light Conditions From Mussel Dredging Frontiers in Marine Science sediment transport model Limfjorden mussel fishery sediment plumes light |
author_facet |
Ane Pastor Janus Larsen Christian Mohn Camille Saurel Jens Kjerulf Petersen Marie Maar |
author_sort |
Ane Pastor |
title |
Sediment Transport Model Quantifies Plume Length and Light Conditions From Mussel Dredging |
title_short |
Sediment Transport Model Quantifies Plume Length and Light Conditions From Mussel Dredging |
title_full |
Sediment Transport Model Quantifies Plume Length and Light Conditions From Mussel Dredging |
title_fullStr |
Sediment Transport Model Quantifies Plume Length and Light Conditions From Mussel Dredging |
title_full_unstemmed |
Sediment Transport Model Quantifies Plume Length and Light Conditions From Mussel Dredging |
title_sort |
sediment transport model quantifies plume length and light conditions from mussel dredging |
publisher |
Frontiers Media S.A. |
series |
Frontiers in Marine Science |
issn |
2296-7745 |
publishDate |
2020-10-01 |
description |
Mussel dredging causes resuspension of sediment particles that reduce water clarity and potentially leads to reduced eelgrass growth. In order to study the impact of resuspension from mussel dredging on light conditions in the water column, field experiments were conducted at two sites in the Limfjorden. Light loggers were placed in two circular arrays around the dredge area. Vertical profiles of current velocity were measured by an ADCP and the sediment particle size composition was obtained from sediment core samples. The field data was used to force, calibrate and validate a sediment transport model developed in the FlexSem model system. Changes in sediment concentrations during and after mussel dredging were modeled for the two sites and for seven scenarios. We found that the distance and direction of the plume in the model was in good agreement with light logger data. The plume duration was less than 1 h, and the impact range was between 260–540 m. The scenarios showed that fishing intensity and current speeds were most important for shaping the sediment plumes. Changes in suspended sediment concentrations were 0.62–1.79 mg l–1 on median average and 1.22–11.61 mg l–1 for the upper quantile of the plume, which were on the same order of magnitude as background values in the Limfjorden. The amount of fishing days during the eelgrass growth season was 6–8% in Lovns Bredning and 16–35% in Løgstør Bredning and less than 1–2% of the total area was dredged per season. Even though there are substantial changes in the light conditions from the sediment plumes, the overall spatio-temporal impact in the study area is considered low. We recommend that management plans in other areas could sustain a shellfish fishery by limiting fishing intensity and frequency near eelgrass beds. The presented approach combines observational data, sediment transport modeling and reported fishing activity. It is a step forward within sediment transport modeling and could be incorporated into environmental impact assessments. The results have recently been used as scientific background for recommendations to improve the management plans according to the Danish Mussel Policy and relevant EU Directives. |
topic |
sediment transport model Limfjorden mussel fishery sediment plumes light |
url |
https://www.frontiersin.org/articles/10.3389/fmars.2020.576530/full |
work_keys_str_mv |
AT anepastor sedimenttransportmodelquantifiesplumelengthandlightconditionsfrommusseldredging AT januslarsen sedimenttransportmodelquantifiesplumelengthandlightconditionsfrommusseldredging AT christianmohn sedimenttransportmodelquantifiesplumelengthandlightconditionsfrommusseldredging AT camillesaurel sedimenttransportmodelquantifiesplumelengthandlightconditionsfrommusseldredging AT jenskjerulfpetersen sedimenttransportmodelquantifiesplumelengthandlightconditionsfrommusseldredging AT mariemaar sedimenttransportmodelquantifiesplumelengthandlightconditionsfrommusseldredging |
_version_ |
1724530176619970560 |