Across Date Species Detection Using Airborne Imaging Spectroscopy
Imaging spectroscopy is a promising tool for airborne tree species recognition in hyper-diverse tropical canopies. However, its widespread application is limited by the signal sensitivity to acquisition parameters, which may require new training data in every new area of application. This study expl...
Main Authors: | , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2019-04-01
|
Series: | Remote Sensing |
Subjects: | |
Online Access: | https://www.mdpi.com/2072-4292/11/7/789 |
id |
doaj-7a0db791d809460c83aab106e73c1749 |
---|---|
record_format |
Article |
spelling |
doaj-7a0db791d809460c83aab106e73c17492020-11-25T00:08:14ZengMDPI AGRemote Sensing2072-42922019-04-0111778910.3390/rs11070789rs11070789Across Date Species Detection Using Airborne Imaging SpectroscopyAnthony Laybros0Daniel Schläpfer1Jean-Baptiste Féret2Laurent Descroix3Caroline Bedeau4Marie-Jose Lefevre5Grégoire Vincent6AMAP, IRD, CNRS, INRA, Univ Montpellier, CIRAD, 34 000 Montpellier, FranceReSe Applications LLC, CH-9500 Wil, SwitzerlandTETIS, Irstea, AgroParisTech, CIRAD, CNRS, Université Montpellier, 500 Rue Jean-François Breton, 34000 Montpellier, FranceONF-Guyane, 97300 Cayenne, FranceONF-Guyane, 97300 Cayenne, FranceCNES, DCT/SI/AP, 18 Avenue Edouard Belin, BPI 1219, 31401 Toulouse CEDEX 9, FranceAMAP, IRD, CNRS, INRA, Univ Montpellier, CIRAD, 34 000 Montpellier, FranceImaging spectroscopy is a promising tool for airborne tree species recognition in hyper-diverse tropical canopies. However, its widespread application is limited by the signal sensitivity to acquisition parameters, which may require new training data in every new area of application. This study explores how various pre-processing steps may improve species discrimination and species recognition under different operational settings. In the first experiment, a classifier was trained and applied on imaging spectroscopy data acquired on a single date, while in a second experiment, the classifier was trained on data from one date and applied to species identification on data from a different date. A radiative transfer model based on atmospheric compensation was applied with special focus on the automatic retrieval of aerosol amounts. The impact of spatial or spectral filtering and normalisation was explored as an alternative to atmospheric correction. A pixel-wise classification was performed with a linear discriminant analysis trained on individual tree crowns identified at the species level. Tree species were then identified at the crown scale based on a majority vote rule. Atmospheric corrections did not outperform simple statistical processing (i.e., filtering and normalisation) when training and testing sets were taken from the same flight date. However, atmospheric corrections became necessary for reliable species recognition when different dates were considered. Shadow masking improved species classification results in all cases. Single date classification rate was 83.9% for 1297 crowns of 20 tropical species. The loss of mean accuracy observed when using training data from one date to identify species at another date in the same area was limited to 10% when atmospheric correction was applied.https://www.mdpi.com/2072-4292/11/7/789tropical forestatmospheric correctionhyperspectrallinear discriminant analysis |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Anthony Laybros Daniel Schläpfer Jean-Baptiste Féret Laurent Descroix Caroline Bedeau Marie-Jose Lefevre Grégoire Vincent |
spellingShingle |
Anthony Laybros Daniel Schläpfer Jean-Baptiste Féret Laurent Descroix Caroline Bedeau Marie-Jose Lefevre Grégoire Vincent Across Date Species Detection Using Airborne Imaging Spectroscopy Remote Sensing tropical forest atmospheric correction hyperspectral linear discriminant analysis |
author_facet |
Anthony Laybros Daniel Schläpfer Jean-Baptiste Féret Laurent Descroix Caroline Bedeau Marie-Jose Lefevre Grégoire Vincent |
author_sort |
Anthony Laybros |
title |
Across Date Species Detection Using Airborne Imaging Spectroscopy |
title_short |
Across Date Species Detection Using Airborne Imaging Spectroscopy |
title_full |
Across Date Species Detection Using Airborne Imaging Spectroscopy |
title_fullStr |
Across Date Species Detection Using Airborne Imaging Spectroscopy |
title_full_unstemmed |
Across Date Species Detection Using Airborne Imaging Spectroscopy |
title_sort |
across date species detection using airborne imaging spectroscopy |
publisher |
MDPI AG |
series |
Remote Sensing |
issn |
2072-4292 |
publishDate |
2019-04-01 |
description |
Imaging spectroscopy is a promising tool for airborne tree species recognition in hyper-diverse tropical canopies. However, its widespread application is limited by the signal sensitivity to acquisition parameters, which may require new training data in every new area of application. This study explores how various pre-processing steps may improve species discrimination and species recognition under different operational settings. In the first experiment, a classifier was trained and applied on imaging spectroscopy data acquired on a single date, while in a second experiment, the classifier was trained on data from one date and applied to species identification on data from a different date. A radiative transfer model based on atmospheric compensation was applied with special focus on the automatic retrieval of aerosol amounts. The impact of spatial or spectral filtering and normalisation was explored as an alternative to atmospheric correction. A pixel-wise classification was performed with a linear discriminant analysis trained on individual tree crowns identified at the species level. Tree species were then identified at the crown scale based on a majority vote rule. Atmospheric corrections did not outperform simple statistical processing (i.e., filtering and normalisation) when training and testing sets were taken from the same flight date. However, atmospheric corrections became necessary for reliable species recognition when different dates were considered. Shadow masking improved species classification results in all cases. Single date classification rate was 83.9% for 1297 crowns of 20 tropical species. The loss of mean accuracy observed when using training data from one date to identify species at another date in the same area was limited to 10% when atmospheric correction was applied. |
topic |
tropical forest atmospheric correction hyperspectral linear discriminant analysis |
url |
https://www.mdpi.com/2072-4292/11/7/789 |
work_keys_str_mv |
AT anthonylaybros acrossdatespeciesdetectionusingairborneimagingspectroscopy AT danielschlapfer acrossdatespeciesdetectionusingairborneimagingspectroscopy AT jeanbaptisteferet acrossdatespeciesdetectionusingairborneimagingspectroscopy AT laurentdescroix acrossdatespeciesdetectionusingairborneimagingspectroscopy AT carolinebedeau acrossdatespeciesdetectionusingairborneimagingspectroscopy AT mariejoselefevre acrossdatespeciesdetectionusingairborneimagingspectroscopy AT gregoirevincent acrossdatespeciesdetectionusingairborneimagingspectroscopy |
_version_ |
1725416008552808448 |