Gravity from entanglement for boundary subregions

Abstract We explore several aspects of the relation between gravity and entanglement in the context of AdS/CFT, in the simple setting of 3 bulk dimensions. Specifically, we consider small perturbations of the AdS metric and the CFT vacuum state and study what can be learnt about the metric perturbat...

Full description

Bibliographic Details
Main Authors: David Blanco, Mauricio Leston, Guillem Pérez-Nadal
Format: Article
Language:English
Published: SpringerOpen 2018-06-01
Series:Journal of High Energy Physics
Subjects:
Online Access:http://link.springer.com/article/10.1007/JHEP06(2018)130
Description
Summary:Abstract We explore several aspects of the relation between gravity and entanglement in the context of AdS/CFT, in the simple setting of 3 bulk dimensions. Specifically, we consider small perturbations of the AdS metric and the CFT vacuum state and study what can be learnt about the metric perturbation from the Ryu-Takayanagi (RT) formula alone. It is well-known that, if the RT formula holds for all boundary spacelike segments, then the metric perturbation satisfies the linearized Einstein equations throughout the bulk. We generalize this result by showing that, if the RT formula holds for all spacelike segments contained in a certain boundary region, then the metric perturbation satisfies the linearized Einstein equations in a corresponding bulk region (in fact, it is completely determined in that region). We also argue that the same is true for small perturbations of the planar BTZ black hole and the CFT thermal state. We discuss the relation between our results and the ideas of subregion-subregion duality, and we point out that our argument also serves as a holographic proof of the linearized RT formula for boundary segments.
ISSN:1029-8479