Spectral Pattern Classification in Lidar Data for Rock Identification in Outcrops
The present study aimed to develop and implement a method for detection and classification of spectral signatures in point clouds obtained from terrestrial laser scanner in order to identify the presence of different rocks in outcrops and to generate a digital outcrop model. To achieve this objectiv...
Main Authors: | , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Hindawi Limited
2014-01-01
|
Series: | The Scientific World Journal |
Online Access: | http://dx.doi.org/10.1155/2014/539029 |
Summary: | The present study aimed to develop and implement a method for detection and classification of spectral signatures in point clouds obtained from terrestrial laser scanner in order to identify the presence of different rocks in outcrops and to generate a digital outcrop model. To achieve this objective, a software based on cluster analysis was created, named K-Clouds. This software was developed through a partnership between UNISINOS and the company V3D. This tool was designed to begin with an analysis and interpretation of a histogram from a point cloud of the outcrop and subsequently indication of a number of classes provided by the user, to process the intensity return values. This classified information can then be interpreted by geologists, to provide a better understanding and identification from the existing rocks in the outcrop. Beyond the detection of different rocks, this work was able to detect small changes in the physical-chemical characteristics of the rocks, as they were caused by weathering or compositional changes. |
---|---|
ISSN: | 2356-6140 1537-744X |