Un innovativo Graphic Matching System per la ricerca in database di manoscritti antichi
The paper outlines a pattern recognition process, which uses a graphic matching algorithm based on a shape contour recognition function without the need to apply segmentation. The process starts from the identification of a Region of Interest (ROI) within the image. The ROI is then managed for the c...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
University of Bologna
2018-11-01
|
Series: | Umanistica Digitale |
Subjects: | |
Online Access: | https://umanisticadigitale.unibo.it/article/view/8144 |
id |
doaj-79d9541c1cc0478cabda7e4543e520fd |
---|---|
record_format |
Article |
spelling |
doaj-79d9541c1cc0478cabda7e4543e520fd2020-11-24T21:38:49ZengUniversity of BolognaUmanistica Digitale2532-88162018-11-012310.6092/issn.2532-8816/81447535Un innovativo Graphic Matching System per la ricerca in database di manoscritti antichiNicola Barbuti0Stefano Ferilli1Tommaso Caldarola2Università degli Studi di Bari Aldo MoroUniversità degli Studi di Bari Aldo MoroD.A.BI.MUS S.r.l.The paper outlines a pattern recognition process, which uses a graphic matching algorithm based on a shape contour recognition function without the need to apply segmentation. The process starts from the identification of a Region of Interest (ROI) within the image. The ROI is then managed for the creation of the shape model then used to perform searches for similar models in one or more target images. The system has been developed and tested with the aim of proposing an innovative approach in the research and retrieval of information in digital libraries related to ancient manuscript and printed documentation. This approach is based on the application to the data humanities of the fourth knowledge paradigm that underlies data science. Following this approach, the algorithm is used to deduce new research hypotheses through the discovery of models directly inferred from large digital libraries.https://umanisticadigitale.unibo.it/article/view/8144Graphic MatchingPattern RecognitionDigital LibrariesData ScienceData HumanitiesManuscriptsDigital Recognition |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Nicola Barbuti Stefano Ferilli Tommaso Caldarola |
spellingShingle |
Nicola Barbuti Stefano Ferilli Tommaso Caldarola Un innovativo Graphic Matching System per la ricerca in database di manoscritti antichi Umanistica Digitale Graphic Matching Pattern Recognition Digital Libraries Data Science Data Humanities Manuscripts Digital Recognition |
author_facet |
Nicola Barbuti Stefano Ferilli Tommaso Caldarola |
author_sort |
Nicola Barbuti |
title |
Un innovativo Graphic Matching System per la ricerca in database di manoscritti antichi |
title_short |
Un innovativo Graphic Matching System per la ricerca in database di manoscritti antichi |
title_full |
Un innovativo Graphic Matching System per la ricerca in database di manoscritti antichi |
title_fullStr |
Un innovativo Graphic Matching System per la ricerca in database di manoscritti antichi |
title_full_unstemmed |
Un innovativo Graphic Matching System per la ricerca in database di manoscritti antichi |
title_sort |
un innovativo graphic matching system per la ricerca in database di manoscritti antichi |
publisher |
University of Bologna |
series |
Umanistica Digitale |
issn |
2532-8816 |
publishDate |
2018-11-01 |
description |
The paper outlines a pattern recognition process, which uses a graphic matching algorithm based on a shape contour recognition function without the need to apply segmentation. The process starts from the identification of a Region of Interest (ROI) within the image. The ROI is then managed for the creation of the shape model then used to perform searches for similar models in one or more target images. The system has been developed and tested with the aim of proposing an innovative approach in the research and retrieval of information in digital libraries related to ancient manuscript and printed documentation. This approach is based on the application to the data humanities of the fourth knowledge paradigm that underlies data science. Following this approach, the algorithm is used to deduce new research hypotheses through the discovery of models directly inferred from large digital libraries. |
topic |
Graphic Matching Pattern Recognition Digital Libraries Data Science Data Humanities Manuscripts Digital Recognition |
url |
https://umanisticadigitale.unibo.it/article/view/8144 |
work_keys_str_mv |
AT nicolabarbuti uninnovativographicmatchingsystemperlaricercaindatabasedimanoscrittiantichi AT stefanoferilli uninnovativographicmatchingsystemperlaricercaindatabasedimanoscrittiantichi AT tommasocaldarola uninnovativographicmatchingsystemperlaricercaindatabasedimanoscrittiantichi |
_version_ |
1725934291793215488 |