Computer-Assisted Segmentation of Videocapsule Images Using Alpha-Divergence-Based Active Contour in the Framework of Intestinal Pathologies Detection

Visualization of the entire length of the gastrointestinal tract through natural orifices is a challenge for endoscopists. Videoendoscopy is currently the “gold standard” technique for diagnosis of different pathologies of the intestinal tract. Wireless capsule endoscopy (WCE) has been developed in...

Full description

Bibliographic Details
Main Authors: L. Meziou, A. Histace, F. Precioso, O. Romain, X. Dray, B. Granado, B. J. Matuszewski
Format: Article
Language:English
Published: Hindawi Limited 2014-01-01
Series:International Journal of Biomedical Imaging
Online Access:http://dx.doi.org/10.1155/2014/428583
id doaj-79cbbe42a8a742e18bb01f7c3dce54dd
record_format Article
spelling doaj-79cbbe42a8a742e18bb01f7c3dce54dd2020-11-24T23:26:30ZengHindawi LimitedInternational Journal of Biomedical Imaging1687-41881687-41962014-01-01201410.1155/2014/428583428583Computer-Assisted Segmentation of Videocapsule Images Using Alpha-Divergence-Based Active Contour in the Framework of Intestinal Pathologies DetectionL. Meziou0A. Histace1F. Precioso2O. Romain3X. Dray4B. Granado5B. J. Matuszewski6ETIS, Université de Cergy-Pontoise, ENSEA, CNRS, 95014 Cergy-Pontoise Cedex, FranceETIS, Université de Cergy-Pontoise, ENSEA, CNRS, 95014 Cergy-Pontoise Cedex, FranceI3S, Université de Nice/Sophia-Antipolis, CNRS, 06900 Sophia-Antipolis, FranceETIS, Université de Cergy-Pontoise, ENSEA, CNRS, 95014 Cergy-Pontoise Cedex, FranceETIS, Université de Cergy-Pontoise, ENSEA, CNRS, 95014 Cergy-Pontoise Cedex, FranceLIP6, Université Pierre et Marie Curie, CNRS, 75252 Paris, FranceRobotics and Computer Vision Research Laboratory, School of Computing Engineering and Physical Sciences, University of Central Lancashire, Preston PR1 2HE, UKVisualization of the entire length of the gastrointestinal tract through natural orifices is a challenge for endoscopists. Videoendoscopy is currently the “gold standard” technique for diagnosis of different pathologies of the intestinal tract. Wireless capsule endoscopy (WCE) has been developed in the 1990s as an alternative to videoendoscopy to allow direct examination of the gastrointestinal tract without any need for sedation. Nevertheless, the systematic postexamination by the specialist of the 50,000 (for the small bowel) to 150,000 images (for the colon) of a complete acquisition using WCE remains time-consuming and challenging due to the poor quality of WCE images. In this paper, a semiautomatic segmentation for analysis of WCE images is proposed. Based on active contour segmentation, the proposed method introduces alpha-divergences, a flexible statistical similarity measure that gives a real flexibility to different types of gastrointestinal pathologies. Results of segmentation using the proposed approach are shown on different types of real-case examinations, from (multi)polyp(s) segmentation, to radiation enteritis delineation.http://dx.doi.org/10.1155/2014/428583
collection DOAJ
language English
format Article
sources DOAJ
author L. Meziou
A. Histace
F. Precioso
O. Romain
X. Dray
B. Granado
B. J. Matuszewski
spellingShingle L. Meziou
A. Histace
F. Precioso
O. Romain
X. Dray
B. Granado
B. J. Matuszewski
Computer-Assisted Segmentation of Videocapsule Images Using Alpha-Divergence-Based Active Contour in the Framework of Intestinal Pathologies Detection
International Journal of Biomedical Imaging
author_facet L. Meziou
A. Histace
F. Precioso
O. Romain
X. Dray
B. Granado
B. J. Matuszewski
author_sort L. Meziou
title Computer-Assisted Segmentation of Videocapsule Images Using Alpha-Divergence-Based Active Contour in the Framework of Intestinal Pathologies Detection
title_short Computer-Assisted Segmentation of Videocapsule Images Using Alpha-Divergence-Based Active Contour in the Framework of Intestinal Pathologies Detection
title_full Computer-Assisted Segmentation of Videocapsule Images Using Alpha-Divergence-Based Active Contour in the Framework of Intestinal Pathologies Detection
title_fullStr Computer-Assisted Segmentation of Videocapsule Images Using Alpha-Divergence-Based Active Contour in the Framework of Intestinal Pathologies Detection
title_full_unstemmed Computer-Assisted Segmentation of Videocapsule Images Using Alpha-Divergence-Based Active Contour in the Framework of Intestinal Pathologies Detection
title_sort computer-assisted segmentation of videocapsule images using alpha-divergence-based active contour in the framework of intestinal pathologies detection
publisher Hindawi Limited
series International Journal of Biomedical Imaging
issn 1687-4188
1687-4196
publishDate 2014-01-01
description Visualization of the entire length of the gastrointestinal tract through natural orifices is a challenge for endoscopists. Videoendoscopy is currently the “gold standard” technique for diagnosis of different pathologies of the intestinal tract. Wireless capsule endoscopy (WCE) has been developed in the 1990s as an alternative to videoendoscopy to allow direct examination of the gastrointestinal tract without any need for sedation. Nevertheless, the systematic postexamination by the specialist of the 50,000 (for the small bowel) to 150,000 images (for the colon) of a complete acquisition using WCE remains time-consuming and challenging due to the poor quality of WCE images. In this paper, a semiautomatic segmentation for analysis of WCE images is proposed. Based on active contour segmentation, the proposed method introduces alpha-divergences, a flexible statistical similarity measure that gives a real flexibility to different types of gastrointestinal pathologies. Results of segmentation using the proposed approach are shown on different types of real-case examinations, from (multi)polyp(s) segmentation, to radiation enteritis delineation.
url http://dx.doi.org/10.1155/2014/428583
work_keys_str_mv AT lmeziou computerassistedsegmentationofvideocapsuleimagesusingalphadivergencebasedactivecontourintheframeworkofintestinalpathologiesdetection
AT ahistace computerassistedsegmentationofvideocapsuleimagesusingalphadivergencebasedactivecontourintheframeworkofintestinalpathologiesdetection
AT fprecioso computerassistedsegmentationofvideocapsuleimagesusingalphadivergencebasedactivecontourintheframeworkofintestinalpathologiesdetection
AT oromain computerassistedsegmentationofvideocapsuleimagesusingalphadivergencebasedactivecontourintheframeworkofintestinalpathologiesdetection
AT xdray computerassistedsegmentationofvideocapsuleimagesusingalphadivergencebasedactivecontourintheframeworkofintestinalpathologiesdetection
AT bgranado computerassistedsegmentationofvideocapsuleimagesusingalphadivergencebasedactivecontourintheframeworkofintestinalpathologiesdetection
AT bjmatuszewski computerassistedsegmentationofvideocapsuleimagesusingalphadivergencebasedactivecontourintheframeworkofintestinalpathologiesdetection
_version_ 1725554824506769408