A Novel Phase Current Reconstruction Method for a Three-Level Neutral Point Clamped Inverter (NPCI) with a Neutral Shunt Resistor

This paper presents three phase current reconstruction methods for a three-level neutral point clamped inverter (NPCI) by measuring the voltage of a shunt resistor placed in the neutral point of the inverter. In order to accurately acquire the phase currents from the shunt resister, the dwell time o...

Full description

Bibliographic Details
Main Authors: Yungdeug Son, Jangmok Kim
Format: Article
Language:English
Published: MDPI AG 2018-10-01
Series:Energies
Subjects:
Online Access:http://www.mdpi.com/1996-1073/11/10/2616
Description
Summary:This paper presents three phase current reconstruction methods for a three-level neutral point clamped inverter (NPCI) by measuring the voltage of a shunt resistor placed in the neutral point of the inverter. In order to accurately acquire the phase currents from the shunt resister, the dwell time of the active voltage vectors need to exceed the minimum time. On the other hand, if the time of active voltage is shorter than the minimum time, the current measurement becomes impossible. In this paper, unmeasurable regions for current are classified into three areas. Area 1 is a region in which both phase currents can be measure. Therefore, it is not necessary to restore the current. In Area 2, only one phase current can be measured. Thus, an estimation or restoration method is needed to measure another phase current. In this paper, the current estimation method using an electrical model of the motor is proposed. Area 3 is the region in which both phase currents can not be measured. In this case, it is necessary to move the voltage vector to the current measurable area by injecting the voltage. In this paper, Area 3 is divided into 36 sectors to inject optimal voltage. The proposed methods have the advantages of high current measurement accuracy and low THD (total harmonic distortion). The effectiveness of the proposed methods are verified through experimental results.
ISSN:1996-1073