Interpolation of Turbulent Boundary Layer Profiles Measured in Flight Using Response Surface Methodology

Turbulent boundary layer profiles on the aircraft surface were characterized by pitot-rake measurements conducted in flight experiments at high subsonic Mach number ranges. Due to slight variations in atmospheric air conditions or aircraft attitudes, such as angles of attack and absolute flight spee...

Full description

Bibliographic Details
Main Authors: Hidemi Takahashi, Mitsuru Kurita, Hidetoshi Iijima, Monami Sasamori
Format: Article
Language:English
Published: MDPI AG 2018-11-01
Series:Applied Sciences
Subjects:
Online Access:https://www.mdpi.com/2076-3417/8/11/2320
Description
Summary:Turbulent boundary layer profiles on the aircraft surface were characterized by pitot-rake measurements conducted in flight experiments at high subsonic Mach number ranges. Due to slight variations in atmospheric air conditions or aircraft attitudes, such as angles of attack and absolute flight speeds at different flights even under the same premised flight conditions, the boundary layer profiles measured at different flights can exhibit different shape and velocity values. This concern leads to difficulty in evaluating the efficiency of using some kind of drag-controlling device such as riblets in the flight test, since the evaluation would be conducted by comparing the profiles measured with and without using riblets at different flights. An approach was implemented to interpolate the boundary layer profile for a flight condition of interest based on the response surface method, in order to eliminate the influence of the flight conditional difference. Results showed that the interpolation with the 3rd-degree response surface model with a combination of two independent variables of flight Mach number and total pressure successfully eliminated the influence of the flight conditional difference, and interpolated the boundary layer profiles measured at different flights within an inaccuracy of 4.1% for the flight Mach number range of 0.5 to 0.78.
ISSN:2076-3417