Summary: | This paper addresses the static deformation of simply supported rectangular micro/nano plates made of functionally graded (FG) materials based on the three-dimensional nonlocal elasticity theory of Eringen. The plates are assumed to be simply supported and rested on a Winkler-Pasternak elastic foundation. Elasticity modulus is assumed to obey an exponential law along the thickness direction of the micro/nano plate. Using the Fourier series, a displacement field is defined that satisfies simply supported boundary condition and reduces three elasticity equations to two independent equations. The closed-form bending response is achieved by exerting boundary conditions of the lateral surfaces. Numerical results are presented to investigate the influences of the gradient index of the material properties, nonlocal parameter and stiffness of elastic foundation on the mechanical behavior of the plates.
|