On the Existence, Uniqueness, and Basis Properties of Radial Eigenfunctions of a Semilinear Second-Order Elliptic Equation in a Ball

We consider the following eigenvalue problem: −Δ𝑢+𝑓(𝑢)=𝜆𝑢, 𝑢=𝑢(𝑥), 𝑥∈𝐵={𝑥∈ℝ3∶|𝑥|<1}, 𝑢(0)=𝑝>0, 𝑢||𝑥|=1=0, where 𝑝 is an arbitrary fixed parameter and 𝑓 is an odd smooth function. First, we prove that for each integer 𝑛≥0 there exists a radially symmetric eigenfunction 𝑢𝑛 which possesses prec...

Full description

Bibliographic Details
Main Author: Peter Zhidkov
Format: Article
Language:English
Published: Hindawi Limited 2009-01-01
Series:International Journal of Mathematics and Mathematical Sciences
Online Access:http://dx.doi.org/10.1155/2009/243048

Similar Items